K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc BMC+góc BNC=90+90=180 độ

=>BMCN nội tiếp

b: Xét ΔAFM và ΔAMK có

góc AMF=góc AKM

góc FAM chung

=>ΔAFM đồng dạng với ΔAMK

=>AF/AM=AM/AK

=>AM^2=AF*AK

a: góc MAO+góc MCO=90+90=180 độ

=>MAOC nội tiếp

b: Xét (O) có

MA,MC là tiếp tuyến

=>MA=MC

mà OA=OC

nên OM là trung trực của AC

=>OM vuông góc AC

 

1. cho tam giác ABC nhọn, góc B = 70 độ nội tiếp đường tròn ( 0; 9 cm). Vẽ hai đường cao BM và CN cắt nhau tại H.a. chứng minh tứ giác AMHN , BCMN nội tiếp.b. Tính độ dài cung nhỏ ACc. chứng minh đường thẳng AO vuông góc MN2. từ 1 điểm A nằm ngoài đường tròn ( 0 ; 6 cm) vẽ hai tiếp tuyến AB, AC với đường tròn ( BC thuộc đường tròn tâm O) và cát tuyến AMN của đường tròn tâm O sao cho MN = 6cma....
Đọc tiếp

1. cho tam giác ABC nhọn, góc B = 70 độ nội tiếp đường tròn ( 0; 9 cm). Vẽ hai đường cao BM và CN cắt nhau tại H.

a. chứng minh tứ giác AMHN , BCMN nội tiếp.

b. Tính độ dài cung nhỏ AC

c. chứng minh đường thẳng AO vuông góc MN

2. từ 1 điểm A nằm ngoài đường tròn ( 0 ; 6 cm) vẽ hai tiếp tuyến AB, AC với đường tròn ( BC thuộc đường tròn tâm O) và cát tuyến AMN của đường tròn tâm O sao cho MN = 6cm

a. Chứng minh tứ giác ABOC nội tiếp

b. tính độ dài đoạn thẳng AB biết AO= 10cm

c. Gọi H là trung điểm của đoạn thẳng MN, chứng minh rằng góc AHB = góc AOB

3. từ 1 điểm H nằm ngoài đường tròn tâm O vẽ 2 tiếp tuyến MP, MN ( N, P thuộc đường tròn tâm O) và cát tuyến MAB ( A, B thuộc đường tròn tâm O). Chứng minh tư giác MPON nội tiếp 1 đường

ai giúp mình giải với mình cảm ơn nhiều

0

a: Xét (A) có 

AH là bán kính

BH\(\perp\)AH tại H

CH\(\perp\)AH tại H

Do đó: BH,CH là tiếp tuyến có H là tiếp điểm

Xét (A) có 

BH là tiếp tuyến có H là tiếp điểm

BM là tiếp tuyến có M là tiếp điểm

Do đó: AB là tia phân giác của \(\widehat{HAM}\)

Xét (A) có 

CH là tiếp tuyến có H là tiếp điểm

CN là tiếp tuyến có N là tiếp điểm

Do đó: AC là tia phân giác của \(\widehat{HAN}\)

Ta có: \(\widehat{MAN}=\widehat{HAM}+\widehat{HAN}\)

\(=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)\)

\(=2\cdot90^0=180^0\)

Do đó: M,A,N thẳng hàng