K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2017

NHANH MINH K

26 tháng 1 2017

B = 5 - 2z2

Vì 2z2 ≥ 0 => B = 5 - 2z2 ≤ 5

Dấu "=" xảy ra khi 2z2 = 0 => z = 0

Vậy Bmax là 5 tại z = 0

C = |x - 3| + |5 - x| ≥ |x - 3 + 5 - x| = 2 

Dấu "=" xảy ra khi (x - 3)(5 - x) ≥ 0 <=> 5 ≥ x ≥ 3

Vậy Cmin = 2 tại 5 ≥ x ≥ 3

30 tháng 5 2016

\(\text{a)Để C đạt GTNN}\)

\(\Rightarrow\hept{\begin{cases}\left(x+2\right)^2\\\left(y-\frac{1}{5}\right)^2\end{cases}\ge0}\)

\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)

\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10\)

\(\Rightarrow C\ge-10\)

\(\text{Vậy minC=-10 khi x=-2;y= }\frac{1}{5}\)

30 tháng 5 2016

b)\(\text{Để D đạt GTLN}\)

=>(2x-3)2+5 đạt GTNN

Mà (2x-3)2\(\ge\)5

\(\Rightarrow GTLN\)của \(A=\frac{4}{5}\)khi \(x=\frac{3}{2}\)

Bài 1:

a: \(M=x^2+4x+4+5=\left(x+2\right)^2+5>=5\)

Dấu '=' xảy ra khi x=-2

b: \(N=x^2-20x+101=x^2-20x+100+1=\left(x-10\right)^2+1>=1\)

Dấu '=' xảy ra khi x=10

24 tháng 6 2017

\(P=-x^2+6x+1=-\left(x^2-6x+9\right)+10=-\left(x-3\right)^2+10\le10\)Vậy \(Max_P=10\) khi \(x-3=0\Rightarrow x=3\)

24 tháng 6 2017

b, \(P=-x^2+6x+1=-\left(x^2-6x-1\right)\)

\(=-\left(x^2-3x-3x+9-10\right)\)

\(=-\left[\left(x-3\right)^2-10\right]\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2-10\ge-10\)

\(\Rightarrow-\left[\left(x-3\right)^2-10\right]\ge10\)

Hay \(P\ge10\) với mọi giá trị của \(x\in R\).

Để \(P=10\) thì \(-\left[\left(x-3\right)^2-10\right]=10\)

\(\Rightarrow\left(x-3\right)^2=0\Rightarrow x=3\)

Vậy.....

Chúc bạn học tốt!!!

18 tháng 1 2017

lớn nhất khi x=0 => A = 95

3 tháng 11 2017

có dư dấu nào không bạn?

4 tháng 11 2017

B = - x2 -y2 + 2x + 2y

B = -( x2 - 2x + 1) - ( y2 - 2y + 1) + 2

B = -( x - 1)2 - ( y - 1)2 + 2

Do : -( x - 1)2 nhỏ hơn hoặc bằng 0 với mọi x

Suy ra : -( x - 1)2 + 2 nhỏ hơn hoặc bằng 2 với mọi x

Do : - ( y - 1)2 nhỏ hơn hoặc bằng 0 với mọi x

Suy ra : - ( y - 1)2 + 2 nhỏ hơn hoặc bằng 2 với mọi x

Vậy , Bmax = 2 khi và chỉ khi : x - 1 = 0 -> x = 1

y - 1 = 0 -> y = 1