Tính nhanh:
\(\frac{2001\times2002+1000}{2001\times2003-1001}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
. là x á nha
=\(\frac{2006}{2008}.\frac{2001}{2004}.\frac{2008}{2002}.\frac{2004}{2006}.\frac{1001}{2001}\)
=\(\frac{2006.2001.2008.2004.1001}{2008.2004.2002.2006.2001}\)
=\(\frac{1001}{2002}\)
= \(\frac{2006\cdot2001\cdot2008\cdot2004\cdot1001}{2008\cdot2004\cdot2002\cdot2006\cdot2001}\)
= \(\frac{1\cdot1\cdot1\cdot1\cdot1001}{1\cdot1\cdot2002\cdot1\cdot1}\)
= \(\frac{1}{2}\)
C = 1 + (-3) + 5 + (-7) +...+ 2001 + (-2003)
C= (1 - 2003) + (2001 - 3) + (5 - 1999) + (1997 - 7) +...+ (1001 - 1003)
C= -2002 + 1998 - 1994 + 1990 +....-2
C= (-4) + (-4) +....+ (-4) - 2 (250 cặp (-4) )
C= 250 x (-4) - 2
C= -1000 - 2 = -1002
D = (-1001) + (-1000) + (-999) +...+ 1001 + 1002
D= (1001 - 1001) + (1000 - 1000) +...+ (1-1) + 0 + 1002
D= 0 + 0 +... + 0 + 0 + 1002
D= 1002
Ta có:
\(\frac{2003\times14+1988+2001\times2002}{2002+2002\times503+504\times2002}\)
ở phép tính này mình sẽ phân tích các số ra: ví dụ: 504 = 14 x36
Ta lại có:\(\frac{2003\times14+1988+2001\times2002}{2002+2002\times503+14\times36\times2002}\)
tiếp đó lượt bỏ các số giống nhau đi:
Ta được: \(\frac{2003+1988+2001}{2002+2002\times503\times36}\)
= \(\frac{5992}{2002+\left(2002\times503\right)\times36}\)
Tới đây bạn tự tính nha!
Ps: Mình không chắc nữa
Đề bài sai rùi,phải là trừ 2 chứ ko phải trừ 1
=2003:(2000+1)x2002-2/2002x2000+2000
=2003:2000x2002+2002-2/2002x2000+2000
=2003:2000x2002+2000/2002x2000+2000
=2003:1=2003
2003
bạn dạy mình cách viêt phân số mình sẽ làm ngay
Ta có công thức Pascal: \(C^m_n+C^{m+1}_n=C^{m+1}_{n+1}\)
Áp dụng vào biểu thức đề cho, ta được: \(C^{k+1}_{2002}\le C^{1001}_{2002}\)
Điều này đúng với mọi (k+1) đi từ 1 đến 2001 (Ta có thể dễ dàng nhận ra điều này khi nhìn vào tam giác Pascal để nhận xét rằng hệ số ngay chính giữa luôn lớn nhất)
Chứng minh: Xét \(C^{k+1}_{2002}-C^k_{2002}=\frac{2002!}{\left(2002-k-1\right)!.\left(k+1\right)!}-\frac{2002!}{\left(2002-k!\right).k!}\)
\(=\frac{2002!.\left(2002-k\right)}{\left(2002-k\right)!.\left(k+1\right)!}-\frac{2002!.\left(k+1\right)}{\left(2002-k\right)!.\left(k+1\right)!}=\frac{2002!}{\left(2002-k\right)!.\left(k+1!\right)}\left(2001-2k\right)\)
+) \(k< 1000,5\Rightarrow2001-2k>0\Rightarrow C^{k+1}_{2002}-C^k_{2002}>0\Rightarrow C^{k+1}_{2002}>C^k_{2002}\)
+) \(k>1000,5\Rightarrow2001-2k< 0\Rightarrow C^{k+1}_{2002}-C^k_{2002}< 0\Rightarrow C^{k+1}_{2002}< C^k_{2002}\)
Vậy dãy số gồm các số hạng có dạng \(C_{2002}^{k+1}\)sẽ tăng dần khi k đi từ 1 tới 1001,5 và giảm dần khi k đi từ 1001,5 tới 2001.
Vậy \(C_{2002}^{k+1}\)lớn nhất khi \(k+1=1001\)---> ĐPCM
\(a,S_3=-2-2-...-2\)
Tổng có \(\left[\left(2003-1\right):2+1\right]:2=501\left(số.hạng\right)\)
\(\Rightarrow S_3=501\cdot\left(-2\right)=-1002\)
\(b,S_4=\left(-1001+1001\right)+\left(-1000+1000\right)+...+\left(-1+1\right)+1002\\ S_4=1002\)
a: \(S_3=1+\left(-3\right)+5+\left(-7\right)+...+2001+\left(-2003\right)\)
=(-2)+(-2)+...+(-2)
=-2004
\(=\frac{2001.\left(2000+2\right)+1000}{2001.\left(2000+3\right)-1001}\)
\(=\frac{2001.2000+2001.2+1000}{2001.2000+2001.3-1001}\)
\(=\frac{2001.2+1000}{2001.3-1001}\)
\(=\frac{2001.2+1000}{2001.2+2001-1001}\)
\(=\frac{2001.2+1000}{2001.2+1000}\)
\(=1\)
2001 x 2002 + 1000 / 2001 x 2003 - 1001 = 2001 x 2002 + 1000 / 2001 x (2002 + 1) - 1001 = 2001 x 2002 + 1000 / 2001 x 2002 + 2001 - 1001 = 1000 / 2001 - 1001 = 1000 / 1000 = 1