Chứng tỏ rằng đa thức f(x) = x2 - 2x + 2 vô nghiệm
Giải rõ ra giùm mình (( như là tại sao lại mất đi x khi ở kết quả ấy ))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x4+x3+x+1 = x3. (x+1) + (x+1) = (x3 + 1)(x+1) = (x+1)2.(x2 - x +1) = 0
=> x + 1 = 0 => x = -1
Vì x2 - x + 1 = (x2 - 2.x .1/2 + 1/4) + 3/4 = (x - 1/2)2 + 3/4 >0 + 3/4 = 3/4
Vậy đa thức trên có nghiệm là x = -1
\(x^2+3x+5=0\)
\(\Rightarrow x^2+2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\frac{9}{4}+5=0\)
\(\Rightarrow\left(x^2+2.x.\frac{3}{2}+\frac{9}{4}\right)+\frac{11}{4}=0\)
\(\Rightarrow\left(x+\frac{3}{2}\right)^2=-\frac{11}{4}\)(vô lý)(vì số bình phương luôn lớn hơn 0)
VẬY ĐA THỨC TRÊN VÔ NGHIỆM
Vậy là xong rùi, nhớ
đa thức trên không có nghiệm vì
với mọi x=a ( dương) thì 2a^4+3a+1 luôn luôn > 0
\(\dfrac{f\left(x\right)}{2x+1}=\dfrac{\left(2x+1\right)\left(x^2-x+1\right)}{2x+1}=x^2-x+1\)
hình như mấy bn ấy làm sai thì phải ( Chỉ là ý kiến của riêng mik ths , ko có ý xúc phạm đâu )
theo mik nghĩ thì phải là :
Đặt f(x) = 0
⇔ x2 - x - x + 2 = 0
⇔ x2 - x - x + 1 + 1 = 0
⇔ x ( x - 1 ) - ( x - 1 ) = 0 - 1 = -1
⇔ ( x - 1 ) ( x - 1 ) = -1
⇔ ( x - 1 )2 = -1
Ta thấy : ( x - 1 )2 ≥ 0 ∀ x
⇒ Đa thức f(x) vô nghiệm
Thay x = -1; x = 5 vào đa thức f(x) = x2 – 4x – 5, ta có:
f(-1) = (-1)2 – 4.(-1) – 5 = 1 + 4 – 5 = 0
f(5) = 52 – 4.5 – 5 = 25 – 20 – 5 = 0
Vậy x = -1 và x = 5 là các nghiệm của đa thức f(x) = x2 – 4x – 5
Thay x = -1; x = 5 vào đa thức f(x) = x2 – 4x – 5, ta có:
f(-1) = (-1)2 – 4.(-1) – 5 = 1 + 4 – 5 = 0
f(5) = 52 – 4.5 – 5 = 25 – 20 – 5 = 0
Vậy x = -1 và x = 5 là các nghiệm của đa thức f(x) = x2 – 4x – 5
Thay x = -1; x = 5 vào đa thức f(x) = x2 – 4x – 5, ta có:
f(-1) = (-1)2 – 4.(-1) – 5 = 1 + 4 – 5 = 0
f(5) = 52 – 4.5 – 5 = 25 – 20 – 5 = 0
Vậy x = -1 và x = 5 là các nghiệm của đa thức f(x) = x2 – 4x – 5