Cho \(A=\frac{2n+5}{n-3}+\frac{12-2n}{n-3}\)
a)Rút gọn A
b)Tìm\(n\in N\)để \(A\in N\)
c)Tìm giá trị nhỏ nhất của A với \(n\in N\)
P/s : Mik` đang cần gấp!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=2-\frac{5}{2n+3}\) A nguyên nên 2n+3\(\in\)U(5)={5,-5,1,-1} nên n\(\in\){2, -4, -1, -2}
A=\(2-\frac{5}{2n+3}\) nên có giá trị lớn nhất khi 2n+3=-1 <=>A=7, nhỏ nhất khi 2n+3=1 <=>A=-3
a, Gọi ƯCLN 2n + 5 ; n + 3 = d \(\left(d\inℕ^∗\right)\)
Ta có : \(2n+5⋮d\)(1)
\(n+3⋮d\Rightarrow2n+6⋮d\)(2)
Lấy (2) - (1) ta được : \(2n+6-2n-5⋮d\Rightarrow1⋮d\Rightarrow d=1\)
b, Để \(B=\frac{2n}{n+3}+\frac{5}{n+3}=\frac{2n+5}{n+3}\)nhận giá trị nguyên khi
\(2n+5⋮n+3\Leftrightarrow2\left(n+3\right)-1⋮n+3\)
\(\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)
n + 3 | 1 | -1 |
n | -2 | -4 |
Ta có B =(10/2n-2)+(n+3/2n-2)
B=13+n/2n-2
2B=26+2n/2n-2
2B=(2n-2/2n-2)+(28/2n-2)
2B=1+(28/2n-2)
Để B nhỏ nhất thì 2n-2<0 và là lớn nhất
<=>n<-1 và là lớn nhất
=>n=-1
=>B=-3
Mk viết hơi khó hiểu nên bn chịu khó dịch nhé!