Phân tích đa thức thành nhân tử (phương pháp tách hạng tử)
1) x2 + x - 90
2) 2x2 + 4xy + 2y2
3) 2y2 - 14y + 24
4*) x8 + x4 + 1
Làm rõ từng bước giúp mình nhé! Thanks nhìu nhé !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(2x^2+3x-5=\left(2x^2+2x\right)-\left(5x+5\right)=2x\left(x+1\right)-5\left(x+1\right)=\left(x+1\right)\left(2x-5\right)\)
2/ \(16x-5x^2-3=\left(15x-5x^2\right)+\left(x-3\right)=5x\left(3-x\right)-\left(3-x\right)=\left(3-x\right)\left(5x-1\right)\)
3/ \(7x-6x^2-2=\left(3x-6x^2\right)-\left(2-4x\right)=3x\left(1-2x\right)-2\left(1-2x\right)=\left(1-2x\right)\left(3x-2\right)\)
4/ \(x^2+5x-6=\left(x^2-x\right)+\left(6x-6\right)=x\left(x-1\right)+6\left(x-1\right)=\left(x-1\right)\left(x+6\right)\)
1) x2 - 4x + 3
= x2 - x - 3x + 3
= (x2 - x) - (3x - 3)
= x.(x - 1) - 3.(x - 1)
= (x - 1).(x - 3)
2) x2 - x - 6
= x2 + 2x - 3x - 6
= (x2 + 2x) - (3x + 6)
= x.(x + 2) - 3.(x + 2)
= (x + 2).(x - 3)
3) x2 + 5x + 4
= x2 + x + 4x + x
= (x2 + x) + (4x + x)
= x.(x + 1) + 4.(x + 1)
= (x + 1).(x + 4)
4) x2 + 5x + 6
= x2 + 2x + 3x + 6
= (x2 + 2x) + (3x + 6)
= x.(x + 2) + 3.(x + 2)
= (x + 2).(x + 3)
a,=x^2+x+3x+3
=x(x+1)+3(x+1)
=(x+3)(x+1)
b,x^2-3x+2x-6
=x(x-3)+2(x-3)
=(x+2)(x-3)
2 câu còn lại từ lm nha.........
a: Ta có: \(x^2-36y^2-x+6y\)
\(=\left(x-6y\right)\left(x+6y\right)-\left(x-6y\right)\)
\(=\left(x-6y\right)\left(x+6y-1\right)\)
b: Ta có: \(16x-8x^2+x^3\)
\(=x\left(x^2-8x+16\right)\)
\(=x\left(x-4\right)^2\)
c: Ta có: \(2x^2-4xy+2y^2-18\)
\(=2\left(x^2-2xy+y^2-9\right)\)
\(=2\cdot\left[\left(x-y\right)^2-9\right]\)
\(=2\left(x-y-3\right)\left(x-y+3\right)\)
d: Ta có: \(3x^2-7x-10\)
\(=3x^2+3x-10x-10\)
\(=3x\left(x+1\right)-10\left(x+1\right)\)
\(=\left(x+1\right)\left(3x-10\right)\)
e: Ta có: \(x^4-x^2-30\)
\(=x^4-6x^2+5x^2-30\)
\(=x^2\left(x^2-6\right)+5\left(x^2-6\right)\)
\(=\left(x^2-6\right)\left(x^2+5\right)\)
f: Ta có: \(x^2-xy-2y^2\)
\(=x^2-2xy+xy-2y^2\)
\(=x\left(x-2y\right)+y\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+y\right)\)
g: Ta có: \(x^4-13x^2y^2+4y^4\)
\(=x^4-4x^2y^2+4y^4-9x^2y^2\)
\(=\left(x^2-2y^2\right)^2-\left(3xy\right)^2\)
\(=\left(x^2-3xy-2y^2\right)\left(x^2-3xy+2y^2\right)\)
\(=\left(x^2-3xy-2y^2\right)\left(x^2-xy-2xy+2y^2\right)\)
\(=\left[x\left(x-y\right)-2y\left(x-y\right)\right]\left(x^2-3xy-2y^2\right)\)
\(=\left(x-y\right)\left(x-2y\right)\left(x^2-3xy-2y^2\right)\)
h: Ta có: \(\left(x^2-2x\right)^2-2\left(x^2-2x\right)-3\)
\(=\left(x^2-2x\right)^2-3\left(x^2-2x\right)+\left(x^2-2x\right)-3\)
\(=\left(x^2-2x\right)\left(x^2-2x-3\right)+\left(x^2-2x-3\right)\)
\(=\left(x^2-2x-3\right)\left(x^2-2x+1\right)\)
\(=\left(x-3\right)\left(x+1\right)\cdot\left(x-1\right)^2\)
Đề sai nhé .Sửu lại
\(x^2-4x^2y^2+4+4x\)
\(=\left(x^2+4x+4\right)-4x^2y^2\)
\(=\left(x+2\right)^2-\left(2xy\right)^2\)
\(=\left(x+2+2xy\right)\left(x+2-2xy\right)\)
a) \(=\left(x+6y\right)\left(x-6y\right)-\left(x-6y\right)\)
\(=\left(x-6y\right)\left(x-6y-1\right)\)
b) \(=x\left(x^2-8x+16\right)\)
\(=x\left(x-4\right)^2\)
c) \(=2\left(x-y\right)^2-18\)
\(=2\left[\left(x-y\right)^2-3^2\right]\)
\(=2\left(x-y+3\right)\left(x-y-3\right)\)
a: \(x^2-36y^2-x+6y\)
\(=\left(x-6y\right)\left(x+6y\right)-\left(x-6y\right)\)
\(=\left(x-6y\right)\left(x+6y-1\right)\)
b: \(x^3-8x^2+16x\)
\(=x\left(x^2-8x+16\right)\)
\(=x\left(x-4\right)^2\)
c: \(2x^2-4xy+2y^2-18\)
\(=2\left(x^2-2xy+y^2-9\right)\)
\(=2\left(x-y-3\right)\left(x-y+3\right)\)
d: \(3x^2-7x-10\)
\(=3x^2+3x-10x-10\)
\(=3x\left(x+1\right)-10\left(x+1\right)\)
\(=\left(x+1\right)\left(3x-10\right)\)
1/ \(x^2+x-90=\left(x^2-10x\right)+\left(9x-90\right)=x\left(x-10\right)+9\left(x-10\right)=\left(x-10\right)\left(x+9\right)\)
2/ \(2x^2+4xy+2y^2=\left(2x^2+2xy\right)+\left(2xy+2y^2\right)=2x\left(x+y\right)+2y\left(x+y\right)=\left(x+y\right)\left(2x+2y\right)\)
3/ \(2y^2-14y+24=2\left(y^2-7y+12\right)=2\left[\left(y^2-4y\right)+\left(12-3y\right)\right]=2\left[y\left(y-4\right)-3\left(y-4\right)\right]\)
\(=2\left(y-4\right)\left(y-3\right)\)
4/ \(x^8+x^4+1=\left(x^8+x^7+x^6\right)-\left(x^7+x^6+x^5\right)+\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\)
\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x+1\right)\)
\(=\left(x^2+x+1\right)\left[\left(x^6-x^5+x^4\right)-\left(x^4-x^3+x^2\right)+\left(x^2-x+1\right)\right]\)
\(=\left(x^2+x+1\right)\left[x^4\left(x^2-x+1\right)\right]-x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^4-x^2+1\right)\)