a) Chứng minh rằng a/b = c/d thì a/b = a+-c/ b+-d
b) Tìm x và y biết x/5 = y/3 và x+y = 16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{a}{b}=\frac{c}{d}\)
Áp dụng t/c của dãy tỉ số = nhau, ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
=> \(\frac{a}{b}=\frac{a+c}{b+d}\)(đpcm)
Vậy\(\frac{a}{b}=\frac{a+c}{b+d}\)
a) Đặt a/b=c/d=k(k thuộc Q)
Suy ra a=b.k
c=d.k
Ta có :a+c/b+d=b.k+dk/d+b=k.(b+d)/b+d=k
a/b=bk/b=k(2)
c/d=dk/d=k(3)
Từ (1);(2);(3) suy ra a/b=c/d
b) Ta có:x/5=y/3=x+y/5+3=16/8=2
x/5=2 suy ra x=10
y/3=2 suy ra y=6
a) Áp dụng tc dãy tỉ số = nhau ta có;
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=2\)
Khi đó: \(\hept{\begin{cases}\frac{x}{3}=2\Rightarrow x=6\\\frac{y}{5}=2\Rightarrow y=10\end{cases}}\)
Vậy \(\hept{\begin{cases}x=6\\y=10\end{cases}}\).
b) Áp dụng tc dãy tỉ số = nhau ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x-y+z}{2-3+4}=\frac{3}{3}=1\)
Khi đó: \(\hept{\begin{cases}\frac{x}{2}=1\Rightarrow x=2\\\frac{y}{3}=1\Rightarrow y=3\\\frac{z}{4}=1\Rightarrow z=4\end{cases}}\)
Vậy ....
2. Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}\left(1\right)}\)
Thay (1) vào đề: \(VT=\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\)
\(VP=\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\)
\(\Rightarrow VT=VP\)
\(\Leftrightarrow\frac{a}{a-b}=\frac{c}{c-d}\rightarrowĐpcm.\)
B2:
a/b=b/c=c/a=a+b+c/b+c+a=1
suy ra a/b=1 suy ra a=b=1(vì hai số bằng nhau mới có tích là 1)
...................................................................................................
với b/c và c/a cũng tương tự như trên và sẽ suy ra a=b=c
a, Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}\)
Áp dụng tính chất của day tỉ số bằng nhau ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}=\dfrac{3a+b}{3c+d}\)
\(=>\dfrac{a}{c}=\dfrac{3a+b}{3c+d}=>\dfrac{a}{3a+b}=\dfrac{c}{3c+d}=>\left(đpcm\right)\)
Bài 1:
Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}=\dfrac{3a+b}{3c+d}\)
⇒\(\dfrac{a}{c}=\dfrac{3a+b}{3c+d}\Rightarrow\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)
Vậy từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)(ĐPCM)
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web
Bài 1:
ta có: \(\frac{a}{b}=\frac{c}{d}\)
ADTCDTSBN
có: \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\left(đpcm\right)\)
a)Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}=\frac{a+\left(-c\right)}{b+\left(-d\right)}\)
Vậy ta có điều phải chứng minh
b)Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{3}=\frac{x+y}{5+3}=\frac{16}{8}=2\)
=>x=2.5=10
y=2.3=6
Vậy x=10 và y=6
b) theo đề ta có: \(\frac{x}{5}=\frac{y}{3}\) và x + y = 16
áp dụng t/c DTSBN ta có:
\(\frac{x}{5}=\frac{y}{3}=\frac{x+y}{5+3}=\frac{16}{8}=2\)
=> \(\frac{x}{5}=2=>x=10\)
\(\frac{y}{3}=2=>y=6\)
vậy x = 10 ; y = 6
chúc bn hok tốt!!
573578769870678567362345215345645654654657657566876894637537