Cho x, y , z là độ dài ba cạnh của tam giác
A=4x2y2 - (x2+y2+z2)2 . Chứng minh A > 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 4x2y2 - (x2 + y2 - z2 )2
= (2xy - x2 - y2 + z2)(2xy + x2 + y2 - z2)
=[ z2-(x-y)2].[ (x+y)2-z2 ]
=(z-x+y)(z+x-y)(x+y-z)(z+y+z)
x,y,z là độ dài 3 cạnh của 1 tam giác=>x>0,y>0,x>0
áp dụng bất đẳng thức của tam giác
ta có:
z-x+y>0
z+x-y>0
x+y-z>0
x+y+z>0
=> tích (z-x+y)(z+x-y)(x+y-z)(x+y+z) >0
=> A>0
Lời giải:
$x^5+y^5+z^5=(x^2+y^2+z^2)(x^3+y^3+z^3)-[x^2(y^3+z^3)+y^2(x^3+z^3)+z^2(x^3+y^3)]$
Mà:
$x^3+y^3+z^3=(x+y)^3-3xy(x+y)+z^3$
$=(-z)^3-3xy(-z)+z^3=3xyz$
Và:
\(x^2(y^3+z^3)+y^2(x^3+z^3)+z^2(x^3+y^3)\)
\(=x^2y^2(x+y)+y^2z^2(y+z)+z^2x^2(z+x)=-x^2y^2z-y^2z^2x-x^2y^2z\)
\(=-xyz(xy+yz+xz)=-xyz[\frac{(x+y+z)^2-(x^2+y^2+z^2)}{2}]=\frac{xyz(x^2+y^2+z^2)}{2}\)
Do đó: \(x^5+y^5+z^5=3xyz(x^2+y^2+z^2)-\frac{xyz(x^2+y^2+z^2)}{2}=\frac{5xyz(x^2+y^2+z^2)}{2}\)
\(\Rightarrow 2(x^5+y^5+z^5)=5xyz(x^2+y^2+z^2)\)
Ta có đpcm.