1/2+1/6+1/12+1/20+1/30+...+1/9900
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{99\cdot100}\)
\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=\dfrac{1}{1}-\dfrac{1}{100}\)
\(A=\dfrac{99}{100}\)
\(\cdot\) LÀ DẤU \(\times\)
A = \(\dfrac{1}{2}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\)+ \(\dfrac{1}{30}\)+.....+ \(\dfrac{1}{9900}\)
A = \(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+....+\dfrac{1}{99\times100}\)
A = \(\dfrac{1}{1}-\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\)+......+ \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{100}\)
A = \(\dfrac{99}{100}\)
\(B=\frac{1}{2}+\frac{1}{6}+...+\frac{1}{9900}=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)\(=\left(1-\frac{1}{100}\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+...\left(\frac{1}{99}-\frac{1}{99}\right)=\left(\frac{100}{100}-\frac{1}{100}\right)+0+...+0=\frac{99}{100}\)Vậy B=99/100
MK k chắc nữa
\(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9900}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{1}-\frac{1}{100}\)
\(=\frac{100}{100}-\frac{1}{100}\)
\(=\frac{100-1}{100}=\frac{99}{100}\)
T= 1 - 1/2 + 1/2 - 1/3 + ......+ 1/99 - 1/100
= 1 - 1/100
= 99/100
\(t=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(t=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(t=1-\frac{1}{100}=\frac{99}{100}\)
Vậy \(t=\frac{99}{100}\)
T= 1/1.2+1/2.3+1/3.4+...+1/99.100
T=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
T=1- 1/100
T= 99/100
đúng cho mình nha bạn
Bài này đơn giản mà bạn
Biến đôi T = \(\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{99.100}\)
\(T=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-......-\frac{1}{100}\)
\(T=\frac{100}{100}-\frac{1}{100}=\frac{99}{100}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
`A=1/2+1/6+1/12+1/20+1/30+...+1/9900`
`=1/(1xx2)+1/(2xx3)+1/(3xx4)+1/(4xx5)+1/(5xx6)+...+1/(99xx100)`
`=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+...+1/99-1/100`
`=1/1-1/100`
`=100/100-1/100`
`=99/100`
A=1/2+1/6+1/12+1/20+1/30+...+1/9900
=1/(1��2)+1/(2��3)+1/(3��4)+1/(4��5)+1/(5��6)+...+1/(99��100)=1/(1xx2)+1/(2xx3)+1/(3xx4)+1/(4xx5)+1/(5xx6)+...+1/(99xx100)
=1/1−1/2+1/2−1/3+1/3−1/4+1/4−1/5+1/5−1/6+...+1/99−1/100=1/1−1/2+1/2−1/3+1/3−1/4+1/4−1/5+1/5−1/6+...+1/99−1/100
=1/1−1/100=1/1−1/100
=100/100−1/100=100/100−1/100
=99/100=99/100
1/2+1/6+1/12+...+1/9900
=1/(1*2)+1/(2*3)+1/(3*4)+...+1/(99*100)
=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
=1-1/100
=99/100
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)