K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2022

bạn chọn đáp án c.12

x/100=3/25

vì x =12 vì : 4 =3

vì 100 : 4 = 25

AH
Akai Haruma
Giáo viên
19 tháng 3 2022

Lời giải:

$\frac{x}{100}=\frac{3}{25}$

$x=\frac{3}{25}\times 100=12$

Đáp án C.

a: \(A=1-\dfrac{2\left(25-\dfrac{2}{2018}+\dfrac{1}{2019}-\dfrac{1}{2020}\right)}{4\left(25-\dfrac{2}{2018}+\dfrac{1}{2019}-\dfrac{1}{2020}\right)}\)

=1-2/4=1/2

b: \(B=\dfrac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot7^3\cdot2^3}\)

\(=\dfrac{5^{10}\cdot7^3\left(1-7\right)}{5^9\cdot7^3\left(1+2^3\right)}=5\cdot\dfrac{-6}{9}=-\dfrac{10}{3}\)

c: x-y=0 nên x=y

\(C=x^{2020}-x^{2020}+y\cdot y^{2019}-y^{2019}\cdot y+2019\)

=2019

NV
12 tháng 1

\(log_216=log_22^4=4\)

\(log_32187=log_33^7=7\)

\(log_{10}\dfrac{1}{100}=log_{10}10^{-2}=-2\)

\(log10000=log10^4=4\)

\(9^{log_312}=3^{2log_312}=3^{log_3144}=144\)

\(8^{log_25}=2^{3log_25}=2^{log_2125}=125\)

\(\left(\dfrac{1}{25}\right)^{log_5\dfrac{1}{3}}=5^{-2log_5\dfrac{1}{3}}=5^{log_59}=9\)

\(\left(\dfrac{1}{4}\right)^{log_23}=2^{-2log_23}=2^{log_2\dfrac{1}{9}}=\dfrac{1}{9}\)

Bài 3:

\(C=\left(\dfrac{9}{x\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x\left(x+3\right)}-\dfrac{x}{3\left(x+3\right)}\right)\)

\(=\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\dfrac{3x-9-x^2}{3x\left(x+3\right)}\)

\(=\dfrac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}\cdot\dfrac{3x\left(x+3\right)}{-\left(x^2-3x+9\right)}\)

\(=\dfrac{-3}{x-3}\)

29 tháng 4 2017

a)

2x-3=0 => x=3/2

b)

2x^2 +1 =0 => vô nghiệm

c) x^2 -25 =0 => x=5 loiaj

x=-5 nhân

d)

x^2 -25 =0 => x=5 loại

x=-5 loại

4 tháng 3 2022

B

4 tháng 3 2022

B

4 tháng 1 2022

B

5 tháng 1 2018

a) \(\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)

\(\Leftrightarrow\dfrac{x-5}{100}-1+\dfrac{x-4}{101}-1+\dfrac{x-3}{102}-1=\dfrac{x-100}{5}-1+\dfrac{x-101}{4}-1+\dfrac{x-102}{3}-1\)

\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}-\dfrac{x-105}{5}-\dfrac{x-105}{4}-\dfrac{x-105}{3}=0\)

\(\Leftrightarrow\left(x-105\right)\left(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}-\dfrac{1}{5}-\dfrac{1}{4}-\dfrac{1}{3}\right)=0\)

\(\Leftrightarrow\left(x-105\right)=0;\left(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}-\dfrac{1}{5}-\dfrac{1}{4}-\dfrac{1}{3}\right)\ne0\)

\(\Leftrightarrow x=105\)

b) \(\dfrac{29-x}{21}+\dfrac{27-x}{23}+\dfrac{25-x}{25}+\dfrac{23-x}{27}+\dfrac{21-x}{29}=-5\)

\(\Leftrightarrow\dfrac{29-x}{21}+1+\dfrac{27-x}{23}+1+\dfrac{25-x}{25}+1+\dfrac{23-x}{27}+1+\dfrac{21-x}{29}+1=0\)

\(\Leftrightarrow\dfrac{50-x}{21}+\dfrac{50-x}{23}+\dfrac{50-x}{25}+\dfrac{50-x}{27}+\dfrac{50-x}{29}=0\)

\(\Leftrightarrow\left(50-x\right)\left(\dfrac{1}{29}+\dfrac{1}{27}+\dfrac{1}{25}+\dfrac{1}{23}+\dfrac{1}{21}\right)=0\)

\(\Leftrightarrow50-x=0;\left(\dfrac{1}{29}+\dfrac{1}{27}+\dfrac{1}{25}+\dfrac{1}{23}+\dfrac{1}{21}\right)\ne0\)

\(\Leftrightarrow x=50\)

1) 

a) Biểu thức \(\dfrac{x-2}{x^2+8x}\) vô nghĩa khi \(x^2+8x=0\)

\(\Leftrightarrow x\left(x+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)

Vậy: Khi \(x\in\left\{0;-8\right\}\) thì biểu thức \(\dfrac{x-2}{x^2+8x}\) vô nghĩa

b) Biểu thức \(\dfrac{25x^2-1}{16x^2-25}\) vô nghĩa khi \(16x^2-25=0\)

\(\Leftrightarrow\left(4x-5\right)\left(4x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-5=0\\4x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=5\\4x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=-\dfrac{5}{4}\end{matrix}\right.\)

Vậy: Khi \(x\in\left\{\dfrac{5}{4};-\dfrac{5}{4}\right\}\) thì biểu thức \(\dfrac{25x^2-1}{16x^2-25}\) vô nghĩa

c) Biểu thức \(\dfrac{x^2+1}{2x^2-28x+98}\) vô nghĩa khi \(2x^2-28x+98=0\)

\(\Leftrightarrow2\left(x^2-14x+49\right)=0\)

\(\Leftrightarrow\left(x-7\right)^2=0\)

\(\Leftrightarrow x-7=0\)

hay x=7

Vậy: Khi x=7 thì biểu thức \(\dfrac{x^2+1}{2x^2-28x+98}\) vô nghĩa

d) Để biểu thức \(\dfrac{2x+3}{9-\left(x+3\right)^2}\) vô nghĩa thì \(9-\left(x+3\right)^2=0\)

\(\Leftrightarrow\left(3-x-3\right)\left(3+x+3\right)=0\)

\(\Leftrightarrow-x\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)

Vậy: Khi \(x\in\left\{0;-6\right\}\) thì biểu thức \(\dfrac{2x+3}{9-\left(x+3\right)^2}\) vô nghĩa

2) 

a) ĐKXĐ: \(x\notin\left\{0;-8\right\}\)

b) ĐKXĐ: \(x\notin\left\{\dfrac{5}{4};-\dfrac{5}{4}\right\}\)

c) ĐKXĐ: \(x\ne7\)

d) ĐKXĐ: \(x\notin\left\{0;-6\right\}\)

3) 

a) Để phân thức \(\dfrac{x-2}{x^2+8x}=0\) thì x-2=0

hay x=2(nhận)

Vậy: Khi x=2 thì phân thức \(\dfrac{x-2}{x^2+8x}=0\)

b) Để phân thức \(\dfrac{25x^2-1}{16x^2-25}=0\) thì \(25x^2-1=0\)

\(\Leftrightarrow\left(5x-1\right)\left(5x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\5x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=1\\5x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\left(nhận\right)\\x=-\dfrac{1}{5}\left(nhận\right)\end{matrix}\right.\)

Vậy: Khi \(x\in\left\{\dfrac{1}{5};-\dfrac{1}{5}\right\}\) thì phân thức \(\dfrac{25x^2-1}{16x^2-25}=0\)

c) Để phân thức \(\dfrac{x^2+1}{2x^2-28x+98}=0\) thì \(x^2+1=0\)

mà \(x^2+1>0\forall x\) thỏa mãn ĐKXĐ

nên \(x\in\varnothing\)

Vậy: Không có giá trị nào của x để \(\dfrac{x^2+1}{2x^2-28x+98}=0\)

d) Để phân thức \(\dfrac{2x+3}{9-\left(x+3\right)^2}=0\) thì 2x+3=0

\(\Leftrightarrow2x=-3\)

hay \(x=-\dfrac{3}{2}\)(nhận)

Vậy: Khi \(x=-\dfrac{3}{2}\) thì phân thức \(\dfrac{2x+3}{9-\left(x+3\right)^2}=0\)

3 tháng 1 2021

mình chỉ làm 1 câu thôi nhé các câu khác làm tương tự

1. biểu thức vô nghĩa <=> mẫu thức = 0 

\(x^2+8x=0< =>\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)

vậy ...

2. tập xác định là tập hợp các giá trị làm phân thức có nghĩa (trong căn thì ≥ 0 ; dưới mẫu thì ≠ 0)

\(x^2+8x\ne0< =>\left[{}\begin{matrix}x\ne0\\x\ne-8\end{matrix}\right.\)

vậy ...

3. để phân thức = 0 => tử bằng không và mẫu khác không

\(\left\{{}\begin{matrix}x-2=0\\x^2+8x\ne0\end{matrix}\right.< =>\left\{{}\begin{matrix}x=2\left(tm\right)\\\left[{}\begin{matrix}x\ne0\\x\ne-8\end{matrix}\right.\end{matrix}\right.\)