K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: AB=2AC

AB^2/AC^2=BH/HC

=>BH/HC=2^2=4

=>BH=4HC

AH^2=HB*HC

=>4HC^2=a^2

=>HC=a/2

=>BH=4*a/2=2a

BC=2a+a/2=5/2*a

\(AB=\sqrt{2a\cdot\dfrac{5}{2}a}=a\sqrt{5}\)

\(AC=\sqrt{2a\cdot\dfrac{1}{2}a}=a\)

b: AM=BC/2=5/4a

MH=căn AM^2-AH^2=căn (5/4a)^2-a^2=3/4a

 

6 tháng 7 2023

1

\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{.4}AC\)

Theo pytago xét tam giác ABC vuông tại A có:

\(\sqrt{AB^2+AC^2}=BC^2\\ \Rightarrow\sqrt{\left(\dfrac{3}{4}AC\right)^2+AC^2}=10\\ \Rightarrow AC=8\\ \Rightarrow AB=\dfrac{3.8}{4}=6\)

Theo hệ thức lượng xét tam giác ABC vuông tại A, đường cao AH có:

\(AB^2=BH.BC\\ \Leftrightarrow BH=\dfrac{AH^2}{BC}=\dfrac{6^2}{10}=3,6\)

2

\(\dfrac{AB}{AC}=\dfrac{27}{4}\Rightarrow AB=\dfrac{27}{4}AC\)

\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{27}{4}AC\right)^2+AC^2}=\dfrac{\sqrt{745}AC}{4}\) ( Theo pytago trong tam giác ABC vuông tại A)

Theo hệ thức lượng trong tam giác ABC vuông tại A, đường cao AH có:

\(AH.BC=AB.AC\\ \Leftrightarrow33,6.\dfrac{\sqrt{745}}{4}AC=\dfrac{27}{4}AC.AC\\ \Rightarrow AC=\dfrac{56\sqrt{745}}{45}\)

\(\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{27}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{42\sqrt{745}}{5}\\BC=\dfrac{\sqrt{745}}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{2086}{9}\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}AC\approx33,97\\AB\approx229,28\\BC\approx231,78\end{matrix}\right.\)

3

`BC=HB+HC=36+64=100`

Theo hệ thức lượng có (trong tam giác ABC vuông tại A đường cao AH):

\(AH^2=HB.HC\\ \Rightarrow AH=\sqrt{36.64}=48\)

\(AB=\sqrt{HB.BC}=\sqrt{36.100}=60\\ AC=\sqrt{HC.BC}=\sqrt{64.100}=80\)

a: \(AH=2\sqrt{6}\left(cm\right)\)

\(AB=2\sqrt{10}\left(cm\right)\)

\(AC=2\sqrt{15}\left(cm\right)\)

15 tháng 10 2021

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AH^2=HB\cdot HC\\AC^2=CH\cdot BC\\AB^2=BH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=2\sqrt{6}\left(cm\right)\\AC=2\sqrt{15}\left(cm\right)\\AB=2\sqrt{10}\left(cm\right)\end{matrix}\right.\)

29 tháng 10 2021

Giải ra đi

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: Đề sai rồi bạn

26 tháng 7 2020

A B C K N 5 12

Mik gọi như này nhé, từ trung điểm M của BC, kẻ vuông góc với BC cắt AC tại N và AB tại K.

Bài làm

a) Xét tam giác ABC vuông tại A có:

\(BC=\sqrt{AB^2+AC^2}\)

hay \(BC=\sqrt{5^2+12^2}=\sqrt{25+144}\)

=> \(BC=\sqrt{169}=13\left(cm\right)\)

=> \(BM=MC=\frac{BC}{2}=\frac{13}{2}=6,5\left(cm\right)\)

Xét tam giác ABC và tam giác MNC có:

\(\widehat{BAC}=\widehat{NMC}=90^0\)

\(\widehat{C}\)chung

=> Tam giác ABC ~ tam giác MNC ( g-g )

=> \(\frac{AB}{MN}=\frac{AC}{MC}\)

hay \(\frac{5}{MN}=\frac{12}{6,5}\Rightarrow MN=\frac{65}{24}\left(cm\right)\)

b) Xét tam giác ABC vuông tại A

Đường cao AH

=> \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)

hay \(\frac{1}{AH^2}=\frac{1}{5^2}+\frac{1}{12^2}\)

=> \(\frac{1}{AH^2}=\frac{1}{25}+\frac{1}{144}\)

=> \(\frac{1}{AH^2}=\frac{169}{3600}\)

=> \(AH^2=\frac{3600}{169}\)

=> \(AH=\sqrt{\frac{3600}{169}}=\frac{60}{13}\)( cm )

Xét tam giác AHB vuông tại H có:

Theo Pytago có:

\(BH^2=AB^2-AH^2\)

hay \(BH^2=5^2-\frac{3600}{169}\)

=> \(BH^2=25-\frac{3600}{169}\)

=>\(BH^2=\frac{625}{169}\)

=> \(BH=\frac{25}{13}\)( cm )

Ta có: BH + HC = BC

hay \(\frac{25}{13}+HC=13\)

=> \(HC=13-\frac{25}{13}\)

=> \(HC=\frac{144}{13}\)