tìm x,y thuộc Z thỏa
/x+3/+/y-1/ <0 hoặc =0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
| x + 3 | + | y - 1 | < 0
=> không thỏa mãn vì đây là hai giá trị tuyệt đối
| x + 3 | + | y - 1 | = 0
+) => x + 3 = 0
=> x = 0 - 3
=> x = -3
+) => y - 1 = 0
=> y = 0 + 1
=> y = 1
Bài 3:
Áp dụng BĐT Cauchy cho các số dương ta có:
\(\frac{1}{x}+\frac{x}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
\(\frac{1}{y}+\frac{y}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
\(\frac{1}{z}+\frac{z}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
Cộng theo vế các BĐT vừa thu được ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{x+y+z}{4}\geq 3\)
\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq 3-\frac{x+y+z}{4}\geq 3-\frac{6}{4}\) (do \(x+y+z\leq 6\) )
\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{3}{2}\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z=2\)
Bài 4:
Áp dụng BĐT Cauchy cho 3 số dương:
\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\geq 3\sqrt[3]{\frac{x}{y}.\frac{y}{z}.\frac{z}{x}}=3\sqrt[3]{1}=3\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z\)
a) Ta có: \(\left|x+4\right|< 3\)
\(\Rightarrow\left|x+4\right|\in\left\{0;1;2\right\}\)
\(\Rightarrow x+4\in\left\{0;\pm1;\pm2\right\}\)
Ta có bảng
x+4 | 0 | 1 | -1 | 2 | -2 |
x | -4 | -3 | -5 | -2 | -6 |
Vậy...
b) ta có: \(\left|x-14+17\right|+\left|y+10-12\right|\le0\)
Mà \(\left|x-14+17\right|+\left|y+10-12\right|\ge0\)
\(\Rightarrow\left|x-14+17\right|+\left|y+10-12\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|x-14+17\right|=0\\\left|y+10-12\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x-14+17=0\\y+10-12=0\end{cases}\Rightarrow}\hept{\begin{cases}x=14-17\\y=-10+12\end{cases}\Rightarrow}\hept{\begin{cases}x=-3\\y=2\end{cases}}}\)
Vậy ....
hok tốt!!
á) | x + 4 | < 3
Ta lại có | x + 4 | ≥ 0 \(\forall\) x ∈ Z
Mà x ∈ Z
<=> | x + 4 | ∈ { 0 ; 1 ; 2 }
\(\Leftrightarrow x+4\in\left\{0;1;-1;2;-2\right\}\)
<=> x ∈ { - 4 ; - 3 ; - 7 ; - 2 ; - 6 }
Vậy ...
b) | x - 14 + 17 | + | y + 10 - 12 | ≤ 0
<=> | x + 3 | + | y - 2 | ≤ 0
+) Lại có \(\hept{\begin{cases}\left|x+3\right|\text{≥}0\\\left|y-2\right|\text{≥}0\end{cases}\forall x;y}\)
<=> | x + 3 | + | y - 2 | ≥ 0 \(\forall\) x ; y
Do đó để | x + 3 | + | y - 2 | ≤ 0 thì \(\hept{\begin{cases}\left|x+3\right|=0\\\left|y-2\right|=0\end{cases}}\)
<=> \(\hept{\begin{cases}x+3=0\\y-2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-3\\y=2\end{cases}}\)
Vậy ..... <=> x = - 3 và y = 2