chứng tỏ rằng 2n+3/2n+5 là phân số tối giản
các bạn giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi UCLN(2n + 3; 4n + 5) là d (d thuộc N*)
=> 2n + 3 chia hết cho d => 4n + 6 chia hết cho d => 4n + 5 + 1 chia hết cho d
và 4n + 5 chia hết cho d
=> 1 chia hết cho d
=> d = 1 (Vì d thuộc N*)
=> UWCLN(2n + 3; 4n + 5) = 1
=> 2n + 3/4n + 5 là phân số tối giản với mọi số tự nhiên n
Vậy,........
Đặt \(\left(4n+12,2n+5\right)=d\)
\(\Leftrightarrow\hept{\begin{cases}\left(4n+12\right)⋮d\\\left(2n+5\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(4n+12\right)⋮d\\\left[2\left(2n+5\right)\right]⋮d\end{cases}}\)
\(\Leftrightarrow\left[\left(4n+12\right)-2\left(2n+5\right)\right]⋮d\)
\(\Leftrightarrow\left[4n+12-4n-10\right]⋮d\)
\(\Leftrightarrow2⋮d\Leftrightarrow\orbr{\begin{cases}d=2\\d=1\end{cases}}\)
Dễ thấy \(\left(2n+5\right)\) không chia hết cho 2 \(\Rightarrow d=1\)
Vậy \(\left(4n+12,2n+5\right)=1\) hay \(\frac{4n+12}{2n+5}\) tối giản với mọi n.
Đặt \(d=\left(n+1,3n+2\right)\).
Suy ra \(\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow3\left(n+1\right)-\left(3n+2\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Đặt \(d=\left(2n+1,4n+3\right)\).
Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
gọi UCLN(2n+5;2n+3) là d
Ta có: 2n+5 chia hết cho d và 2n+3 chia hết cho d
=>2n+5-2n+3 chia hết cho d
=>2 chia hết cho d
=>d =1,2
mà d là ước của số lẻ
=>d=1
=>UCLN(2n+5;2n+3)=1
vậy 2n+5/2n+3 là phân số tối giản.
`Answer:`
Gọi \(ƯC\left(2n+7;5n+17\right)=d\left(d\inℤ\right)\)
\(\Rightarrow\hept{\begin{cases}2n+7⋮d\\5n+17⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}5\left(2n+7\right)⋮d\\2\left(5n+17\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}10n+35⋮d\\10n+34⋮d\end{cases}}\)
Lập hiệu: \(\left(10n+35\right)-\left(10n+34\right)\)
\(=10n+35-10n-34\)
\(=\left(10n-10n\right)+\left(35-34\right)\)
\(=1\)
\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)
Vậy phân số `\frac{2n+7}{5n+17}` tối giản với mọi `n\inNN`