K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2016

\(A=-12m^2.\left(3n^3\right)=-36m^2n^3\)

\(m^2\ge0\)nên \(-36m^2n^3\ge0\Leftrightarrow m=0,n\in Z\)hoặc \(m\in Z,n\le0\)

ủng hộ mik nha xin đó cảm ơn

31 tháng 8 2021

\(A=\left(5m^2-8m^2-9m^2\right)\left(-n^3+4n^3\right)=-12m^2.3n^3=-36m^2n^3\)

Để A\(\ge0\) thì \(m^2n^3\le0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\in Q\\n\le0\end{matrix}\right.\)

31 tháng 8 2021

 

A=(5m2−8m2−9m2)(−n3+4n3)=−12m2.3n3=−36n5A=(5m2−8m2−9m2)(−n3+4n3)=−12m2.3n3=−36n5

Để A≥0≥0 thì n5≤0⇔n≤0

 
1 tháng 2 2017

Ta có : A = (5m2 - 8m2 - 9m3) (- n3 + 4n3) = [(5 - 8 - 9) . m2 ] . [(-1) + 4] n3 = - 12m2 . 3n3 = (-12) . 3 m2.n3 = -36.m2.n3 A ≥ 0 ⇒ -36.m2.n3 ≥ 0 . Vì m2 ≥ 0 với  mọi m nên n3 < 0 ⇒ n < 0.Vậy với mọi m và với n < 0 thì A ≥ 0
 

8 tháng 4 2018

 Cho A= ( 5m^2 - 8m^2 - 9m^2)( -n^3 + 4n^3)
Với giá trị nào m,n thì A ≥​ 0
A= ( 5m^2 - 8m^2 - 9m^2)( -n^3 + 4n^3)
A= -12m^2/3n^3
= -4m^2/n^3
do m^2>=0 với mọi m
nên A>=0
=> n<0 d0 -4<0

vậy A ≥​ 0 khi n<0 vầ m bất kì

3 tháng 4 2018

 Cho A= ( 5m^2 - 8m^2 - 9m^2)( -n^3 + 4n^3)
Với giá trị nào m,n thì A ≥​ 0
A= ( 5m^2 - 8m^2 - 9m^2)( -n^3 + 4n^3)
A= -12m^2/3n^3
= -4m^2/n^3
do m^2>=0 với mọi m
nên A>=0
=> n<0 d0 -4<0

vậy A ≥​ 0 khi n<0 vầ m bất kì

13 tháng 1 2019

Ta có:

\(A=\left(5m^2-8m^2-9m^2\right)\left(-n^3+4n^3\right)\)

\(=-12m^2.3n^3\)

\(=-36m^2.n^3\)

Để \(A\ge0\) thì: \(-36m^2.n^3\ge0\)

Vì: \(-36m^2\le0\forall m\)

=> Để \(-36m^2.n^3\ge0\) thì: \(n^3\le0\) \(\Rightarrow n\le0\)

Vậy : Để: \(A\ge0\) thì: \(n\le0\) và \(\forall m\)

=.= hk tốt!!

13 tháng 1 2019

Ta có: \(A=\left(5m^2-8m^2-9m^2\right)\left(-n^3+4n^3\right)\)

\(A=-12m^2.3n^3=-36m^2n^2\)

Với mọi giá trị của m, ta có:

\(A=-36m^2\le0\)

Để \(A\ge0\) thì \(n\le0\)

\(\Rightarrow A=-36m^2n^3\ge0\)

Với \(m\in R,n\le0\) thì \(A\ge0\)

Trình độ hơi thấp, sai sót gì mong bạn bỏ qua

4 tháng 7 2017

Rút gọn \(A=-12m^2.3n^3=-36m^2.n^3\)

Để \(A\ge0\)thì \(-36m^2n^3\ge0\)

Do \(m^2\ge0\forall m\Rightarrow-36m^2\le0\forall m\)

Vậy \(-36m^2n^3\ge0\Leftrightarrow n^3\le0\Leftrightarrow n\le0\)

Vậy với \(n\le0\) và \(\forall m\) thì \(A\ge0\)

22 tháng 8 2017

bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)