Cho tam giác ABC có góc B= góc C = 40 độ . Gọi Ax là tia phân giác của góc ngoài ở đỉnh A . Hãy chứng tỏ rằng Ax song song với BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC có: góc B +góc C + góc BAC = 180 o => 40 o + 40 o + BAC = 180 o => góc BAC = 180 o - 80 o = 100 o
=> góc BAy = 180 o - BAC = 180 o - 100 o = 80 o (do BAy là góc ngoài tam giác )
=> góc xAB = yAB/2 = 80 o/2 = 40 o (do Ax là p/g của góc yAB)
=> góc xAB = ABC (= 40 o) Mà hai góc này ở vị trí SLT => Ax // BC
Ta có góc B=góc C=40 độ=> góc A= 180 độ- góc B- góc C= 100 độ => góc ngoài của góc A là 80 độ
Ax là phân giác của góc ngoài ở đỉnh A=> góc tạo bởi Ax và AB là 40 độ mà góc B=40 độ=> góc đó=góc B mà 2 góc ở vị trí so le trong=> Ax//BC
Tam giác ABC có: góc B +góc C + góc BAC = 180o => 40o + 40o + BAC = 180o => góc BAC = 180o - 80o = 100o
=> góc BAy = 180o - BAC = 180o - 100o = 80o (do BAy là góc ngoài tam giác )
=> góc xAB = yAB/2 = 80o/2 = 40o (do Ax là p/g của góc yAB)
=> góc xAB = ABC (= 40o) Mà hai góc này ở vị trí SLT => Ax // BC
\(\widehat{BAC}=180^o-\left(\widehat{B}+\widehat{C}\right)=180^o-80^o=100^o\)
\(\widehat{yAc}=180^o-100^o=80^o\)
Mà tia Ax là tia phân giạc góc ngoài của A
\(\Rightarrow\widehat{yAx}=\widehat{xAC}=\frac{\widehat{yAc}}{2}=\frac{80^o}{2}=40^o\)
Ở vị trí so le trong => Ax//BC