K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2022

a, phân số 3n -5 / n - 2 là số nguyên khi : 3n - 5 chia hết cho n - 2 => ( 2n - 5 ) chia hết cho 2x( n - 2 )

                                                                                                                         => 2n - 5 chia hết cho 2n - 4 

                                                                                                                         => (2n - 4) - 1 chia hết cho 2n - 4  

                                                                                                                         => 1 chia hết cho n - 2   

                                                                                                                          =>   1 chia hết cho n - 2 

                                    => n - 2 là ước của 1.  ta có Ư(1) = {  -1 ; 1  }

                                   =>    n - 2 = -1 => n = 1 ( thỏa mãn ) 
                                   =>    n - 2 = 1 => n = 3 ( thỏa mãn )

                                       ta tìm được n = { 3 ; 1}

26 tháng 4 2020

a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d

=> (14n+3) -(21n+4) \(⋮\)d

=> 3(14n+3) -2(21n+4) \(⋮\)d

=> 42n+9 - 42n -8 \(⋮\)d

=> 1\(⋮\)d

=> 21n+4/14n+3 là phân số tối giản

Vậy...

c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d

=> (6n+4) - (21n+3) \(⋮\)d

=> 7(6n+4) - 2(21n+3) \(⋮\)d

=> 42n +28 - 42n -6\(⋮\)d

=> 22 \(⋮\)cho số nguyên tố d

\(\in\){11;2}

Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11

Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ

Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11

Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

a, ta có n+2/n-1=n-1+3/n-1(biến đổi tử để giống mẫu)=1+3/n-1

để n+2/n-1 có giá trị nguyên thì n-1 thuộc Ư(3)

ta có bảng:   n-1              1                    3

                       n               2                   4

Vậy 2 STn đó là 2 hoặc 4

b, Gọi d là ƯC(n+1;2n+1)

ta có: n+1/2n+1=2n+2/2n+1

d= (2n+2)-(2n+1)= 1

Hai phân số tối giản khi tử và mẫu là 2 số nguyên tố cùng nhau và có ƯC=1

=) phân số đó tối giản

Xem cách giải mình nhé bạn, đúng thì nhé!

19 tháng 5 2021

tụi bay là ai

31 tháng 3 2023

Ai có lời giải k ạ