Cho M = 32 + 102001 + 102012 + 102013 + 102014
Chứng minh rằng M chia hết cho 8 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(10\equiv1\left(mod3\right)\Leftrightarrow10^{2013}\equiv1\left(mod3\right)\\ 2014\equiv1\left(mod3\right)\\ \Leftrightarrow10^{2013}-2014\equiv1-1=0\left(mod3\right)\\ \Leftrightarrow10^{2013}-2014⋮3\)
a. Biểu thức này ta có:
32 chia hết cho 8
mà mấy số kia là 10.........0.
Mà các số có dạng 10...............032 ( N c/s 0 mà có tận cúng 1 số chia hết cho 8 thì số đó chia hết cho 8) bạn có thể kiểm chứng bằng máy tính
Câu b
Không dư vì 24 chia hết cho 8
cảm ơn
\(\begin{array}{l}a)M = {32^{2023}} - {32^{2021}}\\M = {32^{2021}}\left( {{{32}^2} - 1} \right)\\M = {32^{2021}}.1023\end{array}\)
Vì \(1023 \vdots 31\) nên \(M = \left( {{{32}^{2021}}.1023} \right) \vdots 31\)
Vậy M chia hết cho 31.
\(\begin{array}{l}b)N = {7^6} + {2.7^3} + {8^{2022}} + 1\\N = {\left( {{7^3}} \right)^2} + {2.7^3} + 1 + {8^{2022}}\\N = {\left( {{7^3} + 1} \right)^2} + {8^{2022}}\\N = {\left( {344} \right)^2} + {8^{2022}}\\N = {\left( {8.43} \right)^2} + {8^{2022}}\\N = {8^2}\left( {{{43}^2} + {8^{2020}}} \right)\end{array}\)
Vì \({8^2} \vdots 8\) suy ra \(N = {8^2}\left( {{{43}^2} + {8^{2020}}} \right) \vdots 8\)
Vậy N chia hết cho 8
a, \(M=1+5+5^2+5^3+..+5^{29}\)
\(=\left(1+5\right)+5^2\left(1+5\right)+...+5^{28}\left(1+5\right)\)
\(=6+5^2.6+...+5^{28}.6=6\left(1+5^2+...+5^{28}\right)⋮6\)( đpcm )
Ta có: \(M=32+10^{2001}+10^{2012}+10^{2013}+10^{2014}\)
\(=32+\left(...0\right)+\left(...0\right)+\left(...0\right)+\left(...0\right)\)
\(=32+\left(...0\right)\)
\(=\left(...032\right)\) chia hết cho 8(vì số có 3 chữ số tận cùng chia hết cho 8 thì chia hết cho 8)
Vậy \(M=32+10^{2001}+10^{2012}+10^{2013}+10^{2014}\) chia hết cho 8
Cảm ơn bạn !