K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2016

Bài 1:

\(A=\left|x-3\right|+\left|x-5\right|+\left|x-7\right|\)

\(\ge x-3+0+7-x=4\)

Dấu = khi \(\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge3\\x=5\\x\le7\end{cases}\)\(\Leftrightarrow x=5\)

Vậy MinA=4 khi x=5

Bài 2:

\(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-5\right|\)

\(\ge x-1+x-2+3-x+5-x=5\)

Dấu = khi \(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le5\end{cases}\)\(\Leftrightarrow2\le x\le3\)

 

28 tháng 5 2018

Vì GTTĐ luôn lớn hơn hoặc bằng 0

=> x - 1 + x - 3 + x - 5 + x - 7 = 8

    4x - 16 = 8

     4x       = 8 + 16 

     4x       = 24

=> x = 6

Vậy.........

28 tháng 5 2018

Sai rồi nhé , Bonking . 

\(\left|x-1\right|=\orbr{\begin{cases}x-1\left(x>0\right)\\-x+1\left(x< 0\right)\end{cases}}\)

10 tháng 4 2017

Lập bảng xét dấu rồi làm nha bạn.

10 tháng 4 2017

mk mới lớp 7 k giải đc toán 8 

10 tháng 9 2017

ta có \(P=\left|x+3\right|+\left|x-2\right|+\left|x-5\right|=\left|x+3\right|+\left|5-x\right|+\left|x-2\right|\)

Áp dụng tính chât dấu giá trị tuyệt đối ta có 

\(\left|x+3\right|+\left|5-x\right|\ge\left|x+3+5-x\right|=8\)

mà \(\left|x-2\right|\ge0\)

\(\Rightarrow P\ge8\)

dấu = xảy ra <=>\(\hept{\begin{cases}\left(x+3\right)\left(5-x\right)\ge0\\x-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x+3\right)\left(x-5\right)\ge0\\x=2\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}5\ge x\ge-3\\x=2\end{cases}}\)

<=> x=2

vậy Pmin =8 <=> x=2

ta có Ix- 3I >= 0

Ix-5I >= 0

=> A >= 0

Đấu "=" đúng ở dạng ta có 2 th

TH1 x-3 = 0 => x = 3 

=>Ix-5I = I3-5I = I-2I = 2

=> A = 0 + 2 =2

th2 x-5 = 0 => x = 5

=>Ix-3I = I5-3I = 2

=> A = 0+2 = 2

VẬY giá tri nhỏ nhất của A = 2

6 tháng 8 2019

\(\left|x-3\right|+\left|x+5\right|\)

\(=\left|3-x\right|+\left|x+5\right|\ge\left|3-x+x+5\right|=8\)

\(\text{Dấu = xảy ra}\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)

\(-5\le x\le3\)

\(\text{Vậy A đạt GTNN là 8 khi }-5\le x\le3\)

9 tháng 8 2015

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|ab\right|\) (dấu bằng xảy ra khi \(ab\ge0\))

\(\Rightarrow\left|x+3\right|+\left|x-5\right|=\left|x+3\right|+\left|5-x\right|\ge\left|x+3+5-x\right|=\left|8\right|=8\)

=> Dmin = 8

Dấu "=" xảy ra khi \(\left(x+3\right)\left(5-x\right)\ge0\Rightarrow x\in\left\{-3;5\right\}\)