Bài 4: Cho góc xOy. Trên tia Ox theo thứ tự lấy điểm A và B(A nằm giữa O và B)sao họ OA=2cm, AB=3cm. Trên tia Oy lấy điểm C sao cho OC=3cm. Từ B kẻ đường thẳng song song với AC cắt OI tại D. Tính độ dài CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)
Vì AC//BD, theo định lí Ta-let ta có:
\(\frac{OC}{CD}=\frac{OA}{AB}hay\frac{3}{CD}=\frac{2}{3}\Rightarrow CD=\frac{3.3}{2}=4,5\left(cm\right)\)
Bạn tự vẽ hình nha
a)Trên tia Ox ta có:OA<OB(vì 3cm<5cm)
=>Điểm A nằm giữa 2 điểm O và B
b)Điểm A nằm giữa 2 điểm O và B
=>OA+AB=OB
=>3 +AB=5
AB=5-3
AB=2 cm
Vậy AB=2cm
c)+)Tia Oy và Ox đối nhau
\(A\in Ox;C\in Oy\)
=>Điểm O nằm giữa 2 điểm A và C (1)
+ )Ta có:OA=3cm;OC=3cm
=>OA=OC(=3cm)(2)
+)Từ (1) và (2)
=>Điểm O là trung điểm của đoạn thẳng AC
Chúc bn học tốt
Câu1: cho M,N là hai điểm trên tia Ox .Biết OM=5cm ,MN=2cm .Tính độ dài ON
Xét tam giác OBM và tam giác OAM có:
OA=OB; góc BOM=góc AOM; OM chung
=> Tam giác OBM= tam giác OAM
=> MA=MB
Vì AC//CD =>\(\dfrac{OA}{AB}=\dfrac{OC}{CD}\Leftrightarrow\dfrac{2}{3}=\dfrac{3}{CD}\Leftrightarrow CD=\dfrac{3.3}{2}=4,5cm\)