Ai giúp em câu 10 với :(
P/s: em cần cả hình vẽ ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( Hình em tự vẽ nhé )
+ Ta có: ΔABC = ΔDEF
=> \(\widehat{A}=\widehat{D}=30^o\)
+ Ta có: \(2\widehat{B}=3\widehat{C}\)
=> \(\widehat{B}=\dfrac{3\widehat{C}}{2}\)
+ Xét ΔABC
=> \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\left(t3g\Delta\right)\)
Mà \(\widehat{A}=30^o;\widehat{B}=\dfrac{3\widehat{C}}{2}\)
=> \(30^o+\dfrac{3\widehat{C}}{2}+\widehat{C}=180^o\)
=> \(\dfrac{3\widehat{C}}{2}+\widehat{C}=150^o\)
\(\Rightarrow\dfrac{3\widehat{C}}{2}+\dfrac{2\widehat{C}}{2}=150^o\)
\(\Rightarrow\dfrac{5\widehat{C}}{2}=150^o\)
\(\Rightarrow5\widehat{C}=75^o\)
\(\Rightarrow\widehat{C}=15^o\)
+ Xét ΔABC
\(\Rightarrow\widehat{A}+\widehat{B}+\widehat{C}=180^o\left(t3g\Delta\right)\)
\(\Rightarrow30^o+15^o+\widehat{B}=180^o\)
\(\Rightarrow\widehat{B}=135^o\)
Do chị ko có máy ở đây nên ko chụp hình vẽ đc, em thông cảm nhé😢
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC và \(MN=\dfrac{BC}{2}\)
hay MN//BP và MN=BP
Xét tứ giác BMNP có
MN//BP
MN=BP
Do đó: BMNP là hình bình hành
Câu 7:
a, \(Fe+H_2SO_4\rightarrow FeSO_4+H_2\)
\(CuO+H_2SO_4\rightarrow CuSO_4+H_2O\)
b, \(n_{H_2}=\dfrac{2,24}{22,4}=0,1\left(mol\right)\)
Theo PT: \(n_{Fe}=n_{H_2}=0,1\left(mol\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\%m_{Fe}=\dfrac{0,1.56}{10}.100\%=56\%\\\%m_{CuO}=44\%\end{matrix}\right.\)
c, \(n_{CuO}=\dfrac{10-0,1.56}{80}=0,055\left(mol\right)\)
Theo PT: \(n_{H_2SO_4}=n_{Fe}+n_{CuO}=0,155\left(mol\right)\)
\(\Rightarrow C\%_{H_2SO_4}=\dfrac{0,155.98}{100}.100\%=15,19\%\)
d, Theo PT: \(\left\{{}\begin{matrix}n_{FeSO_4}=n_{Fe}=0,1\left(mol\right)\\n_{CuSO_4}=n_{CuO}=0,055\left(mol\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m_{FeSO_4}=0,1.152=15,2\left(g\right)\\m_{CuSO_4}=0,055.160=8,8\left(g\right)\end{matrix}\right.\)
Câu 8:
a, \(CuCO_3+2HCl\rightarrow CuCl_2+CO_2+H_2O\)
b, \(n_{CO_2}=\dfrac{3,36}{22,4}=0,15\left(mol\right)\)
Theo PT: \(n_{CuCO_3}=n_{CO_2}=0,15\left(mol\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\%m_{CuCO_3}=\dfrac{0,15.124}{20}.100\%=93\%\\\%m_{CuCl_2}=7\%\end{matrix}\right.\)
c, \(n_{HCl}=2n_{CO_2}=0,3\left(mol\right)\)
\(\Rightarrow C_{M_{HCl}}=\dfrac{0,3}{0,2}=1,5\left(M\right)\)
a:
Gọi O là trung điểm của AD
Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó:ΔACD vuông tại C
Xét tứ giác EFDC có \(\widehat{EFD}+\widehat{ECD}=90^0+90^0=180^0\)
nên EFDC là tứ giác nội tiếp
b: Xét (O) có
\(\widehat{BCA}\) là góc nội tiếp chắn cung BA
\(\widehat{BDA}\) là góc nội tiếp chắn cung BA
Do đó: \(\widehat{BCA}=\widehat{BDA}\)
mà \(\widehat{BDA}=\widehat{ACF}\)(ECDF là tứ giác nội tiếp)
nên \(\widehat{BCA}=\widehat{ACF}\)
=>CA là phân giác của góc BCF