Bai 1; a) Cho \(B\) = \(\frac{1}{2}\)+ (\(\frac{1}{2}\))2 + (\(\frac{1}{2}\))3 + (\(\frac{1}{2}\))4 + ... + (\(\frac{1}{2}\))98 + (\(\frac{1}{2}\))99 . Chứng minh rằng \(B\) \(< 1\)
b) Cho \(C\) = \(\frac{1}{3}\)+ \(\frac{1}{3^2}\)+ \(\frac{1}{3^3}\)+...+ \(\frac{1}{3^{98}}\)+ \(\frac{1}{3^{99}}\). Chứng minh rằng \(C\) \(< \)\(\frac{1}{2}\)
Bai 2;Chứng minh rằng;
a) \(\frac{3}{1^2.2^2}\)+ \(\frac{5}{2^2.3^2}\)+ \(\frac{7}{3^2.4^2}\)+ ... + \(\frac{19}{9^2.10^2}\)\(< \)\(1\)
b) \(\frac{1}{3}\)+ \(\frac{2}{3^2}\)+\(\frac{3}{3^3}\)+ ... + \(\frac{99}{3^{99}}\)+ \(\frac{100}{3^{100}}\)\(< \frac{3}{4}\)
1. a) 2B = 1 + 1/2 + 1/22+...+1/298
B - B = (1+1/2+...+1/298) - (1/2+....+1/299)
B = 1 - 299 => B < 1
b) Làm tương tự như câu a, ra là (1 - 1/399) : 2 = 1/2 - 1/2.399(C bé hơh 1/2)
1. a). Theo đầu bài ta có:
\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{98}+\left(\frac{1}{2}\right)^{99}\)
\(\Leftrightarrow B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)
\(\Leftrightarrow B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\right)\)
\(\Leftrightarrow B=1-\frac{1}{2^{99}}< 1\)( đpcm )