K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2020

Gọi M là giao điểm của AE và CF

ADFE là hình bình hành nên ^ADF = ^AEF (hai góc đối)

Suy ra ^BDF = ^FEC 

Xét \(\Delta\)BDF và \(\Delta\)FEC có:

       BD = FE (cùng bằng AD)

       ^BDF = ^FEC (cmt) 

      DF = EC ( cùng bằng AE)

Do đó \(\Delta\)BDF = \(\Delta\)FEC (c.g.c) suy ra BF = CF (1) và ^BFD = ^FCE

Mặt khác ^AMC = ^DFC (do DF // AE)

^AMC = ^MEC + ^FCE = 600 + ^FCE và ^DFC = ^BFC + ^BFD

Do đó ^BFC = 600 (2)

Từ (1) và 2) suy ra \(\Delta\)FBC đều (đpcm)

NM
11 tháng 1 2022

ta có : undefined

22 tháng 3 2016

A B C D E F G H

22 tháng 3 2016

Giả sử tứ giác ABCD định hướng âm. Gọi \(f\) là phép quay vec tơ theo góc \(\frac{\pi}{3}\) ta có

\(\overrightarrow{EG}=\overrightarrow{AG}-\overrightarrow{AE}=\overrightarrow{AB}+\overrightarrow{BG}-\overrightarrow{AE}\)

suy ra \(f\left(\overrightarrow{EG}\right)=f\left(\overrightarrow{AB}\right)+f\left(\overrightarrow{BG}\right)-f\left(\overrightarrow{AE}\right)\)

                        \(=\overrightarrow{AE}+\overrightarrow{BC}-\overrightarrow{BE}\)

                        \(=\overrightarrow{AC}\)

Tương tự ta cũng chứng minh được \(f\left(\overrightarrow{HF}\right)=\overrightarrow{AC}\)

Từ đó suy ra \(\overrightarrow{EG}=\overrightarrow{HF}\)

Do đó tứ giác EGFH là hình bình hành

9 tháng 6 2016

Gọi giao điểm của hai đường chéo là O giao điểm của hai cạnh bên là S,giao điểm của SO với AB,CD lần lượt là X,Y.
Ta có AX//YC nên theo định lý Ta lét ta có:
\(\frac{AX}{YC}\)=\(\frac{AO}{OC}\)=\(\frac{AB}{DC}\)=\(\frac{AX}{DY}\)
=>YC=DY
Vậy Y là trung điểm của DC.
Ta có AB//DC theo định lý Ta-lét ta có:
\(\frac{AX}{DY}\)=\(\frac{SX}{XY}\)=\(\frac{XB}{YC}\)
mà DY=YC(c/m trên)
=>AX=XB=>X là trung điểm của AB
Vậy giao điểm của SO với AB,CD tại trung điểm của các cạnh đó
=>đpcm
Ta cũng dễ dàng chứng mình được đường thẳng chứa 4 điểm đó là trùng trực của hai cạnh đấy sao khi chừng minh chúng thẳng hàng ở trên nhé!

27 tháng 12 2017

Gọi giao điểm của hai đường chéo là O giao điểm của hai cạnh bên là S,giao điểm của SO với AB,CD lần lượt là X,Y.
Ta có AX//YC nên theo định lý Ta lét ta có:
AXYCAXYC=AOOCAOOC=ABDCABDC=AXDYAXDY
=>YC=DY
Vậy Y là trung điểm của DC.
Ta có AB//DC theo định lý Ta-lét ta có:
AXDYAXDY=SXXYSXXY=XBYCXBYC
mà DY=YC(c/m trên)
=>AX=XB=>X là trung điểm của AB
Vậy giao điểm của SO với AB,CD tại trung điểm của các cạnh đó
=>đpcm