Tìm số nguyên m sao cho số \frac{m+6}{m-1} là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để m+6/m-1 là số nguyên thì m+6 chia hết cho m-1
Mà m+6=[(m-1)+7] chia hết cho m-1
Nên 7 chia hết cho m-1
=>m-1 thuộc Ư(7)
=>m-1 thuộc {-1;1;-7;7}
Ta xét các trường hợp
m-1=1 =>m=2
m-1=-1 =>m=0
m-1=-7 =>m=-6
m-1=7 =>m=8
Vậy m thuộc {-6;0;2;8}
Cho mình 1 l i k e nha bạn
\(M=\frac{\sqrt{a}+6}{\sqrt{a}+1}=\frac{\left(\sqrt{a}+1\right)+5}{\sqrt{a}+1}=\frac{\sqrt{a}+1}{\sqrt{a}+1}+\frac{5}{\sqrt{a}+1}=1+\frac{5}{\sqrt{a}+1}\)
Để \(1+\frac{5}{\sqrt{a}+1}\) là số nguyên <=> \(\frac{5}{\sqrt{a}+1}\) là số nguyên
=> \(\sqrt{a}+1\) thuộc ước của 5 là - 5; - 1; 1 ; 5
Mà \(\sqrt{a}+1\) > 0 => \(\sqrt{a}+1\) = { 1 ; 5 }
\(\Rightarrow\sqrt{a}\) = { 0 ; 4 }
=> a = { 0; 16 }
\(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\)
\(\Rightarrow\frac{2}{n}=\frac{m}{2}-\frac{1}{2}\)
\(\Rightarrow\frac{2}{n}=\frac{m-1}{2}\)
\(\Rightarrow\hept{\begin{cases}2=m-1\\n=2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}m=3\\n=2\end{cases}}\)
Câu còn lại làm nốt
\(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\)
\(\Leftrightarrow\frac{2}{n}=\frac{m}{2}-\frac{1}{2}\)
\(\Leftrightarrow\frac{2}{n}=\frac{m-1}{2}\)
\(\Leftrightarrow\orbr{\begin{cases}2=m-1\\n=2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m=3\\n=2\end{cases}}\)
\(\frac{1}{m}-\frac{n}{6}=\frac{1}{2}\)
\(\Leftrightarrow\frac{n}{6}=\frac{1}{m}-\frac{1}{2}\)
\(\Leftrightarrow\frac{n}{6}=\frac{2-m}{2m}\)
\(\Leftrightarrow\orbr{\begin{cases}n=2-m\\6=2m\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}n=2-m\\m=3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}n=2-3\\m=3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}n=-1\\m=3\end{cases}}\)