Cho tam giác ABC cân tại A. Tia phân giác góc BAC cắt cạnh BC tại M.
a) Chứng minh tam giác AMB = tam giác AMC.
b) Kẻ ME vuông góc AB (E thuộc AB), MF vuông góc AC (F thuộc AC). Chứng minh tam giác MEF cân.
c)Chứng minh AM vuông góc EF
d)Kẻ EI vuông góc với BC tại I.Gọi K là giao điểm của đường thẳng EI và AC. Chứng minh A là trung điểm của KF
Vẽ thêm hình nữa nhé
tham khảo
a: Xét ΔAMB và ΔAMC có
AB=AC
ˆBAM=ˆCAMBAM^=CAM^
AM chug
Do đó: ΔABM=ΔACM
b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
ˆEAM=ˆFAMEAM^=FAM^
Do đó: ΔAEM=ΔAFM
Suy ra: AE=AF
hay ΔAEF cân tại A
c: Ta có: ΔAEM=ΔAFM
nên ME=MF
mà AE=AF
nên AM là đường trung trực của EF
hay AM⊥EF
a: Xét ΔAMB và ΔAMC có
AB=AC
ˆBAM=ˆCAMBAM^=CAM^
AM chug
Do đó: ΔABM=ΔACM
b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
ˆEAM=ˆFAMEAM^=FAM^
Do đó: ΔAEM=ΔAFM
Suy ra: AE=AF
hay ΔAEF cân tại A
c: Ta có: ΔAEM=ΔAFM
nên ME=MF
mà AE=AF
nên AM là đường trung trực của EF
hay AM⊥EF