1.CHỨNG TỎ RẰNG SỐ ab + ba CHIA HẾT CHO 11
GIẢI GIÙM MÌNH NHÉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ab=a.10+b
ba=b.10+a
ab-ba=10a+b-10b-a
=9a-9.b
Giả sử a lớn hơn b n đơn vị, ta có:
(b+n)9-9b
=n.9 => ab-ba luôn chia hết cho 9
b) ab=10a+b
ba=10b+a
ab+ba=10a+a+10b+b
=11a+11b
=(a+b)11
=> ab+ba luôn chia hết cho 11
chúc bạn học tốt nha
Ta có: ab - ba = 10a + b - (10b + a) = 10a + b - 10b - a = 9a - 9b = 9 x (a - b)
Vì a > b nên a - b dương => 9 x (a - b) chia hết cho 9
ab + ba = 10a + b + 10b + a = 11a + 11b = 11 x (a + b) chia hết cho 11
Vì abcabc = 1001 x abc
Mà 1001 lại chia hết cho 11
=> abcabc chia hết cho 11
Hội con 🐄 chúc bạn học tốt!!!
1. Chứng tỏ rằng: ab + ba chia hết cho 11:
Ta có: ab+ba=10a+b+10b+a=11a+11b=11(a+b)
Vì \(11\left(a+b\right)⋮11\)
\(\Rightarrow ab+ba⋮11\)
Chứng tỏ rằng: ab - ba chia hết cho 9
Ta có: ab-ba=10a+b-10b-a=9a-9b=9(a-b)
vì \(9\left(a-b\right)⋮9\)
\(\Rightarrow ab-ba⋮9\)
1. a) Ta có : ab + ba = (a0 + b) + (b0 + a)
= (10a + b) + (10b + a)
= 10a + b + 10b + a
= (10a + a) + (b + 10b)
= 11a + 11b
= 11(a + b) \(⋮\)11
=> ab + ba \(⋮\)11 (ĐPCM)
b) Ta có : ab - ba = (a0 + b) - (b0 + a)
= (10a + b) - (10b + a)
= 10a + b - 10b - a
= (10a - a) - (10b - b)
= 9a - 9b
= 9(a - b) \(⋮\)9
=> ab + ba \(⋮\)9 (ĐPCM)
2) Gọi 3 số tự nhiên liên tiếp là a ; a + 1 ; a + 2
Khi đó a + a + 1 + a + 2
= 3a + 3
= 3(a + 1) \(⋮\)3 (ĐPCM)
3)
Gọi 3 số tự nhiên liên tiếp là a ; a + 1 ; a + 2
Khi đó a + a + 1 + a + 2
= 3a + 3
= 3(a + 1)
=> Tổng của 3 số liên không chia hết cho 4 (ĐPCM)
a) Theo bài ra ta có:
abcabc = 1000abc + abc
= ( 1000 +1)abc
=1001abc.
Vì : 1001 chia hết cho 11 => abcabc chia hết cho 11.
1001 chia hết cho 7 => abcabc chia hết cho 7.
1001 chia hết cho 13 => abcabc chia hết cho 13.
=> Điều phải chứng minh.
b) Ta có:
ab+ba= 10a+b+10b+a=11a+11b=11(a+b) chia hết cho 11.
=> Đpcm.
c)Giả sử 9a+7b chia hết cho 11,ta có:
9(2a+4b)-2(9a+7b)= 18a+36b-(18a+14b)=18a+36b-18a-14b=36b-14b=(36-14)b=22b
Vì 22 chia hết cho 11 => 22b chia hết cho 11.
Mà 9a+7b chia hết cho 11 => 2(9a+7b) chia hết cho 11.
=> 9(2a+4b) chia hết cho 11.
Vì UWCLN(9;11)=1 => 2a+4b chia hết cho 11.
=> Đpcm.
k tớ nha <3
Ta có :
abcabc = 1000abc + abc
= 1001 . abc
= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13
ab + ba = 10a + b + 10b + a = ( 10a + a ) + ( 10b + b ) = 11a + 11b = 11 ( a+b )
Mà 11 chia hết cho 11
=> ab + ba chia hết cho 11 ( đpcm )
Bài giải
Ta có: ab + ba = 10a + b + 10b + a *10a + b + 10b + b = 10a + a + 10b + b*
= 11a + 11b
= 11(a + b)
Vì 11(a + b) \(⋮\) 11
Nên ab + ba \(⋮\)11
Vậy...
xét: ab + ba = 10a + b + 10b + a = ( 10a+ a ) + ( 10b + b )
= 11a + 11 b = 11.( a + b ) chia hết cho 11
vậy: ab + ba chia hết cho 11 ( đpcm )
ab+ba=(a.10+b)+(b.10+a)=11.a+11.b
suy ra ab+ba chia hết cho 11