chứng minh rằng trong hình thang mà hai đáy không = , đoạn thẳng nối trung điểm của 2 đường chéo bằng nửa hiệu cạnh đáy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử hình thang ABCD có AB // CD, AB < CD
Gọi I, K lần lượt là trung điểm hai đường chéo BD, AC; F là trung điểm của BC.
* Trong ∆ ACB, ta có:
K là trung điểm của cạnh AC
F là trung điểm của cạnh BC
Nên KF là đường trung bình của ∆ ACB
⇒ KF // AB và KF = 1/2 AB
(tính chất đường trung bình của tam giác)
Trong ∆ BDC, ta có: I là trung điểm của cạnh BD
F là trung điểm của cạnh BC
Nên IF là đường trung bình của ∆ BDC
⇒ IF // CD và IF = 1/2 CD (tính chất đường trung bình của tam giác)
FK // AB mà AB // CD nên FK // CD
FI // CD (chứng minh trên)
Suy ra hai đường thẳng FI và FK trùng nhau.
⇒ I, K, F thẳng hàng, AB < CD ⇒ FK < FI nên K nằm giữa I và F
IF = IK + KF
⇒ IK = IF – KF = 1/2 CD - 1/2 AB = (CD - AB)/2
Xét hình thang ABCD có AB // CD và AB < CD.
Gọi M là trung điểm AB, E là trung điểm của BD, F là trung điểm của AC.
Theo tính chất đường trung bình tam giác, ta có : MF // CD và MF = 1/2 CD (1) ME // AB // CD và ME = 1/2 AB (2) Từ (1) và (2) suy ra M, E, F thẳng hàng (vì qua điểm M chỉ có 1 đường thẳng song song với CD). Vì CD > AB nên MF > ME, hay là E nằm giữa M và F. Ta có: \(EF=MF-ME=\dfrac{1}{2}CD-\dfrac{1}{2}AB=\dfrac{1}{2}\left(CD-AB\right)\) (điều phải chứng minh)Xét tam giác BCD có: - KB = KC (gt)
- MB = MD (gt)
MK là trung bình của BCD.
MK song song và bằng ½ CD
Tương tự như trên ta có:
- HN là trung bình ADC. HN song song và bằng ½ CD.
- HM là trung bình ABD. HM song song và bằng ½ AB.
- KN là trung bình của CAB. KN song song và bằng ½ AB.
H, M, N, K thẳng hàng (tiên đề Ơ – clit)
HK là trung bình của hình thang ABCD (tự chứng minh).
HK = (AB + CD)/2 (t/c)
HM + NK + KM + HN = 2HK.
mà MN = HK – HM – NK
MN = (HM + NK + KM + HN)/2 – HM – NK
= (AB + CD)/2 – AB
= 1/2AB – AB + CD/2
= CD/2 – 1/2AB
= (CD – AB)/2 (đpcm)
Vẽ hình thang ABCD, AB song song với CD. Lấy M, N lần lượt là trung điểm của BD và AC. Lấy H và K lần lượt là trung điểm của BC và AD.
Xét tam giác BCD có: - KB = KC ( gt )
- MB = MD ( gt )
MK là trung bình của BCD.
MK song song và bằng 1/2 CD
Tương tự như trên ta có:
- HN là trung bình ADC. HN song song và bằng 1/2 CD.
- HM là trung bình ABD. HM song song và bằng 1/2 AB.
- KN là trung bình của CAB. KN song song và bằng 1/2 AB.
H, M, N, K thẳng hàng ( tiên đề Ơ – clit )
HK là trung bình của hình thang ABCD ( tự chứng minh ).
HK = ( AB + CD ) / 2 ( t/c )
HM + NK + KM + HN = 2HK.
mà MN = HK – HM – NK
MN = (HM + NK + KM + HN)/2 – HM – NK
= (AB + CD)/2 – AB
= 1/2AB – AB + CD/2
= CD/2 – 1/2AB
= (CD – AB)/2 (đpcm)
Giả sử hình thang ABCD có AB // CD, AB < CD.
I, K lần lượt là trung điểm hai đường chéo BD, AC
Gọi F là trung điểm của BC
Trong tam giác ACB ta có:
K là trung điểm của cạnh AC
F là trung điểm của cạnh BC
Nên KF là đường trung bình của ∆ BDC
⇒ KF // AB và KF=\(\frac{1}{2}\)ABKF=\(\frac{1}{2}\)AB (tính chất đường trung bình của tam giác)
Trong tam giác BDC ta có:
I là trung điểm của cạnh BD
F là trung điểm của cạnh BC
Nên IF là đường trung bình của ∆ BDC
⇒ IF // CD và IF=\(\frac{1}{2}\)CDIF=\(\frac{1}{2}\)CD (tính chất đường trung bình của tam giác)
FK // AB mà AB // CD nên FK // CD
FI // CD (chứng minh trên)
Suy ra hai đường thẳng FI và FA trùng nhau.
⇒ I, K, F thẳng hàng, AB < CD ⇒ FK < FI nên K nằm giữa I và F
IF = IK + KF
\(\eqalign{ & \Rightarrow IK = IF - KF \cr & = {1 \over 2}CD - {1 \over 2}AB = {{CD - AB} \over 2} \cr}\)
Ta có hình vẽ ( mang tính tương đối )
Gọi ,M,E,F lần lượt là trung điểm của các đoạn AD ; BD ; AC
Xét \(\Delta ABD\)có M,E lần lượt là trung điểm của AD và BD nên ME là đường trung bình của tam giác ADB
Do đó \(ME//AB;ME=\frac{1}{2}AB\)(1)
Xét \(\Delta ADC\)có M;F lần lưượt là trung điểm của AD;AC nên MF là đường trung bình của tam giác ADC
Do đó \(MF=\frac{DC}{2};MF//DC\)mà \(AB//DC\)(vì tứ giác ABCD là hình thang ) nên \(MF//DC\)(2)
Từ (1) và (2) ta có ba điểm M;E;F thẳng hàng ( theo tiên đề Ơ-clit) và
\(FE=FM-EM=\frac{1}{2}\left(CD-AB\right)\)
Vậy trong hình thang mà 2 đáy không bằng nhau đoạn thẳng nối trung điểm của 2 đường chéo bằng nửa hiệu 2 đáy.
Giả sử hình thang ABCD có AB // CD, AB < CD.
I, K lần lượt là trung điểm hai đường chéo BD, AC
Gọi F là trung điểm của BC
Trong tam giác ACB ta có:
K là trung điểm của cạnh AC
F là trung điểm của cạnh BC
Nên KF là đường trung bình của ∆ BDC
⇒ KF // AB và KF=12ABKF=12AB (tính chất đường trung bình của tam giá
Trong tam giác BDC ta có:
I là trung điểm của cạnh BD
F là trung điểm của cạnh BC
Nên IF là đường trung bình của ∆ BDC
⇒ IF // CD và IF=12CDIF=12CD (tính chất đường trung bình của tam giác)
FK // AB mà AB // CD nên FK // CD
FI // CD (chứng minh trên)
Suy ra hai đường thẳng FI và FA trùng nhau.
⇒ I, K, F thẳng hàng, AB < CD ⇒ FK < FI nên K nằm giữa I và F
IF = IK + KF
\(\eqalign{
& \Rightarrow IK = IF – KF \cr
& = {1 \over 2}CD – {1 \over 2}AB = {{CD – AB} \over 2} \cr} \)