Cho 2016 số tự nhiên bất kỳ. Chứng tỏ luôn tìm được hai số mà hiệu của nó chia hết cho 2015.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
ND
0
19 tháng 9 2016
Ta đã biết 1 số tự nhiên khi chia cho 5 chỉ có thể có 5 loại số dư là dư 0; 1; 2; 3; 4; 5. Có 6 số mà chỉ có 5 loại số dư nên theo nguyên lí Đirichlet sẽ có ít nhất 2 số cùng dư
Hiệu của 2 số này chia hết cho 5
Chứng tỏ với 6 số tự nhiên bất kì, luôn có ít nhất 2 số tự nhiên mà hiệu của chúng chia hết cho 5
Ta đã biết 1 số tự nhiên chia cho 2015 chỉ có thể có 2015 loại số dư là dư 0; 1; 2; 3; ...; 2015
Có 2015 loại số dư mà có 2016 số tự nhiên nên theo nguyên lí Đi - rích - lê sẽ có ít nhất 2 số cùng dư, hiệu của chúng chia hết cho 2015
=> đpcm
Ủng hộ mk nha ^_-
Cảm ơn bạn nhé !