So sánh :
\(1\) và \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{50}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{50}}\)
\(2A=1+\frac{1}{2}+...+\frac{1}{2^{49}}\)
\(2A-A=1-\frac{1}{2^{50}}\)
\(A=1-\frac{1}{2^{50}}< 1\)
\(\Rightarrow A< 1\)
\(S=\frac{3}{1^2\cdot2^2}+\frac{5}{2^2\cdot3^2}+\frac{7}{3^2\cdot4^2}+...+\frac{99}{49^2\cdot50^2}\)
\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+.....+\frac{1}{49^2}-\frac{1}{50^2}\)
\(=1-\frac{1}{50^2}=\frac{2499}{2500}\)
\(T=\frac{1}{\left(2-1\right)\left(2+1\right)}+\frac{1}{\left(3-1\right)\left(3+1\right)}+...+\frac{1}{\left(50-1\right)\left(50+1\right)}\)
\(=\frac{1}{1\cdot3}+\frac{1}{2\cdot4}+\frac{1}{3\cdot5}+...+\frac{1}{49\cdot51}\)
\(=\frac{1}{2}\cdot\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{1}{2}\cdot\left(1+\frac{1}{2}-\frac{1}{51}\right)=\frac{151}{204}\)
Vì \(\frac{2499}{2500}>\frac{151}{204}\)nên S>T
JOKER_Võ Văn Quốc, T = \(\frac{1}{2}.\left(1-\frac{1}{51}+\frac{1}{2}-\frac{1}{50}\right)\)mới đúng
Sẽ dễ hơn nếu bạn chia ra 2 vế \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)và \(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{48+50}\)
ta có 1/2^2<1/2
1/2^3<1/2
.............
1/2^50<1/2
\(\Rightarrow\)1/2*50>1/2^1+1/2^2+1/2^3+...........+1/2^50
\(\Rightarrow\)
\(A=\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)
\(2A=2.\left(\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{49}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{48}}+\frac{1}{2^{49}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{50}}\right)\)
\(A=1-\frac{1}{2^{50}}\)
\(\Rightarrow A< 1\)
le đinh dat chỉ bậy tính thế thì ai tính ko được mà céc cũng phải mất 1 ngày mứ ra kiểu tính mò nớ đó
ChoA=1/26+1/27+1/28+.. +1/49, B=1-1/2+1/3-1/4+... +1/49-1/50
Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{50}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{49}}\)
=> \(A=2A-A=1-\frac{1}{2^{50}}< 1\)
=> \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{50}}< 1\)
\(\text{Đ}\text{ặt}\) \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{50}}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{49}}\)
\(\Rightarrow2A-A=A=1-\frac{1}{2^{50}}< 1\)