(a-d)/(d+b)+(d-b)/(b+c)+(b-c)/(c+a)+(c-a)/(a+d) lớn hơn hoặc bằng 0
Biết a,b,c,d>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xí câu 1:))
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)
Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )
Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )
Vậy ta có đpcm
Đẳng thức xảy ra <=> a=2 => x=y=2
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
tham khảo bài này xem có ra không
(ac+bd)2+(ad-bc)2=a2c2+2abcd+b2d2+a2d2-2abcd+b2c2
=a2c2+b2d2+a2d2+b2c2
=(a2c2+b2c2)+(b2d2+a2d2)
=c2.(a2+b2)+d2.(a2+b2)
=(a2+b2)(c2+d2)= VT ( điều phải chứng minh)
Gợi ý cho bạn :
Đặt \(x=a+b\), \(y=b+c\) , \(z=c+d\) , \(t=d+e\), \(u=e+a\),
Ta có \(a=\frac{x+u-t+z-y}{2}\), \(b=\frac{x+y+t-z-u}{2}\), \(c=\frac{y+z+u-t-x}{2}\), \(d=\frac{z+t+x-y-u}{2}\), \(e=\frac{t+u+y-x-z}{2}\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+e}+\frac{d}{e+a}+\frac{e}{a+b}\)
\(=\frac{x+u+z-t-y}{2y}+\frac{x+y+t-z-u}{2z}+\frac{y+z+u-t-x}{2t}+\frac{z+t+x-y-u}{2u}+\frac{t+u+y-x-z}{2x}\)
Đến đây nhóm lại rồi áp dụng BĐT Cauchy.
Cần chứng minh \(\frac{a-d}{b+d}+\frac{d-b}{b+c}+\frac{b-c}{c+a}+\frac{c-a}{a+d}\ge0\)
Ta có \(\frac{a-d}{b+d}+\frac{d-b}{b+c}+\frac{b-c}{c+a}+\frac{c-a}{a+d}=\frac{\left(a+b\right)-\left(b+d\right)}{b+d}+\frac{\left(c+d\right)-\left(b+c\right)}{b+c}+\frac{\left(a+b\right)-\left(c+a\right)}{c+a}+\frac{\left(c+d\right)-\left(a+d\right)}{a+d}\)\(=\frac{a+b}{b+d}-1+\frac{c+d}{b+c}-1+\frac{a+b}{c+a}-1+\frac{c+d}{a+d}-1\)
\(=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{c+a}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)
Áp dụng bất đẳng thức \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) được :
\(\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{c+a}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\ge\frac{4\left(a+b\right)}{a+b+c+d}+\frac{4\left(c+d\right)}{a+b+c+d}-4\)\(=\frac{4\left(a+b+c+d\right)}{a+b+c+d}-4=4-4=0\)
Suy ra ta có điều phải chứng minh.
Quá đúng, Lão HLBN này :D