Cho ba số tự nhiên A B C thoả mãn điều kiện ABC =105 và BC+B + 1 khác 0 tính GTBT sau :
V = 105/ABC+AB+A + B/BC+B+1 + A/AB+A+105
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì abc=105 nên thay 105 bằng abc ta được:
\(s=\frac{abc}{a\left(bc+b+1\right)}\)+\(\frac{b}{bc+b+1}\)+\(\frac{a}{ab+a+abc}\)
\(s=\frac{bc}{bc+b+1}\)+\(\frac{b}{bc+b+1}\)+\(\frac{1}{b+1+bc}\)=\(\frac{bc+b+1}{bc+b+1}\)=1
Cho mình 1 l i k e nha..............
\(S=\frac{105}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+105}\)
\(S=\frac{abc}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\)
\(S=\frac{abc}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\)
\(S=\frac{bc+b+1}{bc+b+1}=1\)
Thay 105 = abc
\(M=\frac{abc}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}.\)a không thể = 0 vì tích abc = 105
\(M=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{b+1+bc}=\frac{bc+b+1}{bc+b+1}=1.\)vì bc+b+1 khác 0.
Nếu bạn thử thế số vào luôn thì sẽ dể làm hơn đó
vì ta có a.b.c= 105 nên a,b,c khác 0
ta có a.b.c=3.5.7=105
=> ta có a=3, b=5, c=7. Sau đó bạn thế số vào nhé
Vì abc=105 nên thay 105 bằng abc ta được:
\(S=\dfrac{abc}{a\left(bc+b+1\right)}\)+\(\dfrac{b}{bc+b+1}\)+\(\dfrac{a}{ab+a+abc}\)
\(S=\dfrac{bc}{bc+b+1}\)+\(\dfrac{b}{bc+b+1}\)+\(\dfrac{1}{b+1+bc}\)=\(\dfrac{bc+b+1}{bc+b+1}\)=1
\(s=\frac{105}{105+ab+a}+\frac{ab}{a.\left(bc+b+1\right)}+\frac{a}{ab+a+105}=\frac{105}{105+ab+a}+\frac{ab}{abc+ab+a}+\frac{a}{ab+a+105}\)
\(s=\frac{105}{105+ab+a}+\frac{ab}{105+ab+a}+\frac{a}{ab+a+105}=\frac{105+ab+a}{105+ab+a}=1\)
Thay 105 = abc vào biểu thức S ta được:
\(S=\frac{abc}{a.\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{bc+b+1}=\frac{bc+b+1}{bc+b+1}=1\)
Vậy S=1