K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2016

\(A=\frac{x+y}{z}+1+\frac{x+z}{y}+1+\frac{y+z}{x}+1-3\)

\(A=\frac{x+y+z}{z}+\frac{x+y+z}{y}+\frac{x+y+z}{x}-3\)

\(A=\left(x+y+z\right)\cdot\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-3=\left(z+y+z\right)\cdot0-3=-3\)

Vậy, A = -3

10 tháng 7 2016

cảm ơn bạn nha

8 tháng 8 2018

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\)

      \(\frac{1}{x}+\frac{1}{z}=-\frac{1}{y}\)

      \(\frac{1}{y}+\frac{1}{z}=-\frac{1}{x}\)

\(A=\frac{x+y}{z}+\frac{x+z}{y}+\frac{y+z}{x}=\frac{x}{z}+\frac{y}{z}+\frac{x}{y}+\frac{z}{y}+\frac{y}{x}+\frac{z}{x}\)

\(=\left(\frac{y}{z}+\frac{y}{x}\right)+\left(\frac{x}{z}+\frac{x}{y}\right)+\left(\frac{z}{y}+\frac{z}{x}\right)\)

\(=y\left(\frac{1}{z}+\frac{1}{x}\right)+x\left(\frac{1}{z}+\frac{1}{y}\right)+z\left(\frac{1}{y}+\frac{1}{x}\right)\)

\(=y.\frac{-1}{y}+x.\frac{-1}{x}+z.\frac{-1}{z}=-1-1-1=-3\)

Vậy nên A = -3

19 tháng 6 2023

\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\\ \Rightarrow\dfrac{y+z-x}{x}+2=\dfrac{z+x-y}{y}+2=\dfrac{x+y-z}{z}+2\\ \Rightarrow\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}=\dfrac{x+y+z}{z}\\ \Rightarrow x=y=z\\ \Rightarrow A=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)

19 tháng 6 2023

avt ảnh bạn à, vừa handsome vừa học giỏi nx -.-

17 tháng 12 2018

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\\\frac{1}{y}+\frac{1}{z}=-\frac{1}{x}\\\frac{1}{x}+\frac{1}{z}=-\frac{1}{y}\end{cases}}\) (*)

Ta có: \(A=\frac{x+y}{z}+\frac{x+z}{y}+\frac{y+z}{x}\)

\(=\frac{x}{z}+\frac{y}{z}+\frac{x}{y}+\frac{x}{y}+\frac{y}{x}+\frac{z}{x}\)

\(=\left(\frac{x}{z}+\frac{x}{y}\right)+\left(\frac{y}{x}+\frac{y}{z}\right)+\left(\frac{z}{x}+\frac{z}{y}\right)\)

\(=x\left(\frac{1}{z}+\frac{1}{y}\right)+y\left(\frac{1}{x}+\frac{1}{z}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)\)

Thay (*) vào,ta có : \(A=x.\left(\frac{-1}{x}\right)+y.\left(-\frac{1}{y}\right)+z.\left(-\frac{1}{z}\right)=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)

20 tháng 8 2020

\(a^2-2b+6b+b^2=-10\)

\(\Leftrightarrow a^2-2a+6b+b^2+10=0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2+6b+9\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b+3\right)^2=0\left(1\right)\)

Vì \(\hept{\begin{cases}\left(a-1\right)^2\ge0\forall a\\\left(b+3\right)^2\ge0\forall b\end{cases}\Leftrightarrow\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b+3\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1\\b=-3\end{cases}}}\)

\(L=\frac{x+y}{z}+1+\frac{y+z}{x}+1+\frac{x+z}{y}+1-3\)

\(=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-3=0-3=-3\)

24 tháng 2 2019

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x+y-2014z}{z}=\frac{y+z-2014x}{x}=\frac{z+x-2014y}{y}=\frac{\left(-2012\right)\left(x+y+z\right)}{x+y+z}=-2012\)

Ta có: \(\frac{x+y-2014z}{z}=-2012\Rightarrow x+y-2014z=-2012z\Leftrightarrow x+y=2z\)

Tương tự: \(y+z=2x,z+x=2y\)

Khi đó:  \(A=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}=\frac{2x.2y.2z}{xyz}=8\)

Vậy A=8.

24 tháng 2 2019

Nguyễn Tất Đạt thiếu 1 trường hợp nha bạn

\(x+y+z=0\)

\(\Rightarrow\hept{\begin{cases}x=-y-z\\y=-x-z\\z=-x-y\end{cases}}\)

\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)

\(A=\left(-\frac{z}{y}\right).\left(\frac{-x}{z}\right).\left(\frac{-y}{x}\right)=-1\)

2 tháng 5 2019

#)Giải :

\(A=\left(1-\frac{z}{y}\right).\left(1-\frac{x}{y}\right).\left(1-\frac{y}{z}\right)\)

\(A=\frac{x-z}{x}.\frac{x+y}{z}.\frac{z-y}{x}\)

\(x+y-z=0\Leftrightarrow\hept{\begin{cases}x+y=z\\x-z=-y\\z-y=x\end{cases}}\)

Thay vào A, ta được :

\(A=\frac{-y}{x}.\frac{z}{y}.\frac{x}{z}=\frac{-yzx}{xyz}=-1\)

       ~Will~be~Pens~