K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2016

Bài 1: \(\left(\frac{-1}{16}\right)^{100}=\frac{1}{\left(2^4\right)^{100}}=\frac{1}{2^{400}}>\frac{1}{2^{500}}=\left(\frac{-1}{2}\right)^{500}.\)

Bài 2: \(100^{99}+1>100^{68}+1\Rightarrow\frac{1}{100^{99}+1}< \frac{1}{100^{68}+1}\Rightarrow\frac{-99}{100^{99}+1}>\frac{-99}{100^{68}+1}\)

\(\Rightarrow100+\frac{-99}{100^{99}+1}>100+\frac{-99}{100^{68}+1}\Rightarrow\frac{100^{100}+1}{100^{99}+1}>\frac{100^{69}+1}{100^{68}+1}\)

1 tháng 11 2016

giờ trả lời còn được tick ko bạn

4 tháng 11 2016

được mà bn

16 tháng 5 2016

theo tớ thì lấy 100A so sánh với 100B

20 tháng 3 2017

2 vế bằng nhau

100-(1+1/2+1/3+...+1/100) = 1/2+2/3+3/4+...+99/100

100- 1-1/2-1/3-...-1/100 = 1/2+2/3+3/4+...+99/100

100 = 1 + 1/2 + 1/2 + 1/3 + 2/3 + ... + 1/100 + 99/100 (cùng cộng 2 vế với (- 1-1/2-1/3-...-1/100)

100 = 1 + 1 + 1 + ... + 1 (100 số hạng)

100 = 100

Vậy   100-(1+1/2+1/3+...+1/100) = 1/2+2/3+3/4+...+99/100

21 tháng 3 2017

Cảm ơn bạn!

30 tháng 8 2016

\(\left(1-\frac{1}{99}\right).\left(1-\frac{1}{100}\right).....\left(1-\frac{1}{2006}\right)\)

\(=\left(\frac{99}{99}-\frac{1}{99}\right).\left(\frac{100}{100}-\frac{1}{100}\right).....\left(\frac{2006}{2006}-\frac{1}{2006}\right)\)

\(=\frac{98}{99}.\frac{99}{100}......\frac{2005}{2006}\)

\(=\frac{98.99.....2005}{99.100....2006}\)

\(=\frac{98}{2006}=\frac{49}{2006}\)

ủng hộ nha ai k mik k lại

18 tháng 12 2015

ta có:A=\(\frac{-3}{2^2}.\frac{-8}{3^2}....\frac{-9999}{100^2}\)

A có 99 thừa số âm

=>A<0

\(=>-A=\frac{3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}....\frac{99.101}{100.100}\)

=>\(-A=\frac{101}{100.2}=\frac{101}{200}>\frac{100}{200}=\frac{1}{2}=>-A>\frac{1}{2}=>A<-\frac{1}{2}\)

tick nhé

22 tháng 1 2018

So sánh A và B biết A = \(\frac{100^{100}+1}{100^{ }^{99}+1}\)và B = \(\frac{100^{99}+1}{100^{98}+1}\)

Vì :    100100 > 10069

          10099 > 10068

=>  A > B

17 tháng 10 2018

dễ thấy A<1. Áp dụng \(\frac{a}{b}\)< 1 thì \(\frac{a}{b}\)\(\frac{a+c}{b+c}\), ta có :

A=\(\frac{^{100^{100}}+1}{^{ }100^{99}+1}\)\(\frac{^{\left(100^{100}+1\right)+\left(100^{21}-1\right)}}{\left(100^{99}+1\right)+\left(100^{21}-1\right)}\)\(\frac{100^{100}+100^{21}}{100^{99}+100^{21}}\)=\(\frac{100^{21}.\left(100^{69}+1\right)}{100^{21}.\left(100^{68}+1\right)}\)=\(\frac{100^{69}+1}{100^{68}+1}\)=B

Vậy A<B