cho hinh thang cân abcd (ab//cd,ab<cd).goi o là giao diem cua ac va bd,i la giao diem cua ad va bc a) chung minh rang oa=ob,oc=od b) gọi m,n lần lượt là trung điểm cua cac cạnh ab,cd.chứng minh i,m,o,n thăng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Từ D,E kẻ DE,CF vuông góc với AB \(\left(E,F\in AB\right)\)
Xét trong Δ vuông ADE tại D có góc A bằng 60 độ
=> \(\widehat{ADE}=30^0\)
Vì tam giác ADE có: \(\hept{\begin{cases}\widehat{A}=60^0\\\widehat{ADE}=30^0\\\widehat{AED}=90^0\end{cases}}\) => \(AE=\frac{AD}{2}=\frac{2}{2}=1\left(cm\right)\)
Tương tự tính được: \(BF=1\left(cm\right)\)
=> \(FE=AB-AE-BF=4,5-2=2,5\left(cm\right)\)
Vì DC // FE và DE // FC nên theo t/c đoạn chắn
=> DC = FE = 2,5 (cm)
Áp dụng định lý Pytago ta được: \(DE^2=AD^2-AE^2=2^2-1^2=3\left(cm\right)\)
=> \(DE=\sqrt{3}\left(cm\right)\)
Diện tích hình thang cân ABCD là: \(\frac{\left(AB+CD\right).DE}{2}=\frac{7\sqrt{3}}{2}\left(cm^2\right)\)
Giải
Kẻ DH vuông góc với AB
\(\sin\widehat{A}=\frac{DH}{AD}\)
\(\Leftrightarrow\sin60^o=\frac{DH}{2}\Rightarrow DH=\sqrt{3}\)
\(\cos A=\frac{AH}{AD}\)
\(AH=\cos60^o.2\)
\(\Rightarrow DC=AB-1-1=4,5-2=2,5\)
\(S\)ABCD=\(\frac{1}{2}.\sqrt{3}.\left(4,5+2,5\right)\)
\(=\frac{7\sqrt{3}}{2}\)
kẻ bk ⊥ dc ag ⊥ dc
abcd là ht cân
suy ra kc +dg+gk=dc
2kc +ab =dc
kc= dc -ab trên 2 = 10-4 trên 2=3 cm
bk mũ 2 = bc mũ 2 - kc mũ 2 = 5 mũ 2 - 3 mũ 2 =4cm
ta có ih song song kb
di = ib
suy ra ih là đường tb
suy ra ih =1 phần 2 kb = 1 phần 2 nhân 4 =2 cm
Vì ABCD là hình thang cân nên AB=AD=BC
Tam giác ACD cân tạ C, ta có: góc DAC=góc ADC
Tam giác ABC cân tại B, ta có: góc BAC= góc ACB
Mặt khác: góc ACB= góc ACD (vì góc ACD= góc BAC (so le trong))= gócBCD/2 = góc ADC/2
Ta có: góc DAB + góc ADC= góc DAC+góc BAC+góc ADC= 2.góc ADC+góc ACD/2=180 độ (vì AB//CD)→ góc ADC=72 độ
Uhm! Câu này khó đấy ! Mình cứ làm không biết có đúng không nhé. Hi
Đầu tiên bạn vẽ hình ra.
*Vì đây là hình thang cân nên ta có những điều sau:
-AB//CD
-2 đường chéo bằng nhau : AC=BD=CD (theo giả thiết)
-2 cạnh bên bằng nhau: AD=BC=AB (theo giả thiết)
-tổng 2 góc đối nhau = 180 độ
-góc A=B ; góc C=D
Đặt các góc:ADB=D1 ; BDC=D2 ;ACB=C1 ; ACD=C2 ; DBC=B1 ; ABD=B2 ; DAC=A1 ; CAB = A2
*AB=AD suy ra tam giác ADB cân tại A nên góc D1=B2. Mặt khác vì AB//CD nên góc D2 = B2 (sole trong)
=>ADB=ABD=BDC => D1=D2
*AB=BC suy ra tam giác ABC cân tại B nên góc BAC=BCA. tương tự gocA2=C2 (sole trong)
=>A2=C1=C2 =>C1=C2
* Vì gócC=D nên suy ra C1=C2=D1=D2
* Có C2=D1 và lại có D1=B2 (đã chứng minh ở trên) nên C2=B2 (1)
* Xét tam giác BDC có BD=CD (theo giả thiết) nên BDC cân suy ra B1 = C = C1+C2 (2)
* Từ (1) và (2) suy ra B=B1+B2 = C1 + C2 + C2 = 3C2 = 3D2 (vì C2=D2 - CM trên thêm nữa góc D= D1 + D2 = 2D2 )
* Mà góc B+D = 180* nên suy ra 3.D2 + 2.D2 = 180* <=> 5.D2=180* <=> D2=36*
Suy ra D = C = 36 x 2 = 72*
A = B = 36 x 3 = 108*
*Vì đây là hình thang cân nên ta có những điều sau:
-AB//CD
-2 đường chéo bằng nhau : AC=BD=CD (theo giả thiết)
-2 cạnh bên bằng nhau: AD=BC=AB (theo giả thiết)
-tổng 2 góc đối nhau = 180 độ
-góc A=B ; góc C=D
Đặt các góc:ADB=D1 ; BDC=D2 ;ACB=C1 ; ACD=C2 ; DBC=B1 ; ABD=B2 ; DAC=A1 ; CAB = A2
*AB=AD suy ra tam giác ADB cân tại A nên góc D1=B2. Mặt khác vì AB//CD nên góc D2 = B2 (sole trong)
=>ADB=ABD=BDC => D1=D2
*AB=BC suy ra tam giác ABC cân tại B nên góc BAC=BCA. tương tự gocA2=C2 (sole trong)
=>A2=C1=C2 =>C1=C2
* Vì gócC=D nên suy ra C1=C2=D1=D2
* Có C2=D1 và lại có D1=B2 (đã chứng minh ở trên) nên C2=B2 (1)
* Xét tam giác BDC có BD=CD (theo giả thiết) nên BDC cân suy ra B1 = C = C1+C2 (2)
* Từ (1) và (2) suy ra B=B1+B2 = C1 + C2 + C2 = 3C2 = 3D2 (vì C2=D2 - CM trên thêm nữa góc D= D1 + D2 = 2D2 )
* Mà góc B+D = 180* nên suy ra 3.D2 + 2.D2 = 180* <=> 5.D2=180* <=> D2=36*
Suy ra D = C = 36 x 2 = 72*
A = B = 36 x 3 = 108*
từ A kẻ đường thẳng song song với BC cắt CD tại E
⇒tứ giác ABCE là hình bình hành ⇒AB=CE=4cm;AE=BC=5cm⇒DE=CD-EC=4cm
xét Δ ADE có:AD2+DE2=32+42=25
AE2=52=25⇒AD2+DE2=AE2
⇒Δ⇒ΔADE vuông tại D ⇒AD⊥DE hay AD⊥DC
⇒tứ giác ABCD là hình thang vuông