K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc C chung

=>ΔCDE đồng dạng với ΔCAB

=>CD/CA=CE/CB

=>CD*CB=CA*CE

 

a: BC=căn 6^2+8^2=10cm

BF là phân giác

=>FA/AB=FC/BC

=>FA/3=FC/5=(FA+FC)/(3+5)=8/8=1

=>FA=3cm; FC=5cm

b: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC

17 tháng 5 2018

Hình dễ vẽ; bạn tự vẽ nhé!

a) Xét tam giác HBA và tam giác ABC; ta có:

\(\widehat{AHB}=\widehat{BAC}=90^0\)

\(\widehat{B}\)- chung

\(\Rightarrow\)tam giác HBA đồng dạng tam giác ABC (g-g)

b) Xét tam giác ABH và tam giác ADH có:

\(\widehat{AHB}=\widehat{AHD}=90^0\)

\(AH\)- cạnh chung

\(BH=HD\)(GT)

\(\Rightarrow\)Tan giác ABD = tam giác ADH (c-g-c)

\(\Rightarrow\)AB = AD (2 cạnh tương ứng)

Vì tam giác HBA đồng dạng với tam giác ABC

\(\Rightarrow\frac{HB}{AB}=\frac{AB}{BC}\Rightarrow HB.BC=AB.AB=AB.AD\)(Vì AB = AD theo chứng minh trên)

Vậy AB.AD=BH.BC (ĐPCM)

a: Xét ΔAHB vuông tại H và ΔCAB vuông tại A có

góc B chung

=>ΔAHB đồng dạng với ΔCAB

b: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)

HB=15^2/20=9cm

c: AD*AB=AH^2

AE*AC=AH^2

=>AD*AB=AE*AC

a: BC=căn 6^2+8^2=10cm

b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

c: HB=AB^2/BC=6^2/10=3,6cm

HC=10-3,6=6,4cm