K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2023

a)

Xét 2 tam giác vuông AMC và AMB có:

AM chung

BM=CM (gt)

=>\(\Delta AMC = \Delta AMB\) (hai cạnh góc vuông)

=> AC=AB (2 cạnh tương ứng)

=> Tam giác ABC cân tại A

b)

Kẻ MH vuông góc với AB (H thuộc AB)

     MG vuông góc với AC (G thuộc AC)

Xét 2 tam giác vuông AHM và AGM có:

AM chung

\(\widehat {HAM} = \widehat {GAM}\) (do AM là tia phân giác của góc BAC)

=>\(\Delta AHM = \Delta AGM\) (cạnh huyền – góc nhọn)

=> HM=GM (2 cạnh tương ứng)

Xét 2 tam giác vuông BHM và CGM có:

BM=CM (giả thiết)

MH=MG(chứng minh trên)

=>\(\Delta BHM = \Delta CGM\)(cạnh huyền – cạnh góc vuông)

=>\(\widehat {HBM} = \widehat {GCM}\)(2 góc tương ứng)

=>Tam giác ABC cân tại A.

18 tháng 9 2023

Bạn ơi copy ghi tham khảo

\(\text{#TNam}\)

`a,` Vì Tam giác `ABC` cân tại `A -> AB = AC,`\(\widehat{B}=\widehat{C}\)

Xét Tam giác `AIB` và Tam giác `AIC` có:

`AB = AC (CMT)`

\(\widehat{B}=\widehat{C}\) `(CMT)`

`IB = IC (g``t)`

`=> \text {Tam giác AIB = Tam giác AIC (c-g-c)}`

Hnhu câu `b,` bạn ghi thiếu yêu cầu rồi nhé!

`c,` Xét Tam giác `AEI` và Tam giác `MEC` có:

`EA = EC (g``t)`

\(\widehat{AEI}=\widehat{MEC}\) `(\text {2 góc đối đỉnh})`

`EM = EI (g``t)`

`=> \text {Tam giác AEI = Tam giác MEC (c-g-c)}`

`->`\(\widehat{AIE}=\widehat{CME}\) `(\text {2 góc tương ứng})`

Mà `2` góc này nằm ở vị trí sole trong `-> \text {AI // CM}`

Vì Tam giác `ABI =` Tam giác `ACI (a)`

`->`\(\widehat{AIB}=\widehat{AIC}\) `(\text {2 góc tương ứng})`

Mà `2` góc này nằm ở vị trí kề bù 

`->`\(\widehat{AIB}+\widehat{AIC}=180^0\)

`->`\(\widehat{AIB}=\widehat{AIC}=\) `180/2=90^0`

`-> AI \bot BC`

Mà `\text {AI // CM} -> MC \bot BC`

loading...

 

25 tháng 1 2017

a) Vì \(\Delta\)ABC cân tại A

=> AB = AC và \(\widehat{ABC}\) = \(\widehat{ACB}\)

hay \(\widehat{EBM}\) = \(\widehat{ICM}\)

Xét \(\Delta\)EBM vuông tại E và \(\Delta\)ICM vuông tại I có:

BM = CM (suy từ gt)

\(\widehat{EBM}\) = \(\widehat{ICM}\) (c/m trên)

=> \(\Delta\)EBM = \(\Delta\)ICM (ch - gn)

=> EB = IC (2 cạnh t/ư)

Ta có: AE + EB = AB

AI + IC = AC

mà EB = IC; AB = AC => AE = AI

b) Gọi giao điểm của AM và EI là D.

\(\Delta\)EBM = \(\Delta\)ICM (câu a)

=> EM = IM (2 cạnh t/ư)

Xét \(\Delta\)AEM và \(\Delta\)AIM có:

AE = AI (câu a)

AM chung

EM = IM (c/m trên)

=> \(\Delta\)AEM = \(\Delta\)AIM (c.c.c)

=> \(\widehat{EAM}\) = \(\widehat{IAM}\) (2 góc t/ư)

hay \(\widehat{EAD}\) = \(\widehat{IAD}\)

Xét \(\Delta\)ADE và \(\Delta\)ADI có:

AE = AI (câu a)

\(\widehat{EAD}\) = \(\widehat{IAD}\) (c/m trên)

AM chung

=> \(\Delta\)ADE = \(\Delta\)ADI (c.g.c)

=> DE = DI (2 cạnh t/ư) Do đó D là tđ của EI (1) và \(\widehat{ADE}\) = \(\widehat{ADI}\) (2 góc t/ư) mà \(\widehat{ADE}\) + \(\widehat{ADI}\) = 180o (kề bù) => \(\widehat{ADE}\) = \(\widehat{ADI}\) = 90o Do đó AD \(\perp\) EI hay AM \(\perp\) EI (2) Từ (1) và (2) suy ra AM là đg trung trực của EI. c) Vì AE = AI nên \(\Delta\)AEI cân tại A => \(\widehat{AEI}\) = \(\widehat{AIE}\) Áp dụng tc tổng 3 góc trong 1 tg ta có:

\(\widehat{AEI}\) + \(\widehat{AIE}\) + \(\widehat{BAC}\) = 180o

=> 2\(\widehat{AEI}\) = 180o - \(\widehat{BAC}\)

=> \(\widehat{AEI}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (3)

Do \(\Delta\)ABC cân tại A

=> \(\widehat{ABC}\) = \(\widehat{ACB}\)

Áp dụng tc tổng 3 góc trong 1 tg ta có:

\(\widehat{ABC}\) + \(\widehat{ACB}\) + \(\widehat{BAC}\) = 180o

=> 2\(\widehat{ABC}\) = 180o - \(\widehat{BAC}\)

=> \(\widehat{ABC}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (4) Từ (3) và (4) suy ra \(\widehat{AEI}\) = \(\widehat{ABC}\) mà 2 góc này ở vị trí đồng vị nên EI // BC Câu c bên kia.
25 tháng 1 2017

A B C E I M D

a) Vì \(\Delta\)ABC cân tại A

=> AB = AC và \(\widehat{ABC}\) = \(\widehat{ACB}\)

hay \(\widehat{EBM}\) = \(\widehat{ICM}\)

Xét \(\Delta\)EBM vuông tại E và \(\Delta\)ICM vuông tại I có:

BM = CM (suy từ gt)

\(\widehat{EBM}\) = \(\widehat{ICM}\) (c/m trên)

=> \(\Delta\)EBM = \(\Delta\)ICM (ch - gn)

=> EB = IC (2 cạnh t/ư)

Ta có: AE + EB = AB

AI + IC = AC

mà EB = IC; AB = AC => AE = AI

b) Gọi giao điểm của AM và EI là D.

\(\Delta\)EBM = \(\Delta\)ICM (câu a)

=> EM = IM (2 cạnh t/ư)

Xét \(\Delta\)AEM và \(\Delta\)AIM có:

AE = AI (câu a)

AM chung

EM = IM (c/m trên)

=> \(\Delta\)AEM = \(\Delta\)AIM (c.c.c)

=> \(\widehat{EAM}\) = \(\widehat{IAM}\) (2 góc t/ư)

hay \(\widehat{EAD}\) = \(\widehat{IAD}\)

Xét \(\Delta\)ADE và \(\Delta\)ADI có:

AE = AI (câu a)

\(\widehat{EAD}\) = \(\widehat{IAD}\) (c/m trên)

AM chung

=> \(\Delta\)ADE = \(\Delta\)ADI (c.g.c)

=> DE = DI (2 cạnh t/ư) Do đó D là tđ của EI (1) và \(\widehat{ADE}\) = \(\widehat{ADI}\) (2 góc t/ư) mà \(\widehat{ADE}\) + \(\widehat{ADI}\) = 180o (kề bù) => \(\widehat{ADE}\) = \(\widehat{ADI}\) = 90o Do đó AD \(\perp\) EI hay AM \(\perp\) EI (2) Từ (1) và (2) suy ra AM là đg trung trực của EI. c) Vì AE = AI nên \(\Delta\)AEI cân tại A => \(\widehat{AEI}\) = \(\widehat{AIE}\) Áp dụng tc tổng 3 góc trong 1 tg ta có:

\(\widehat{AEI}\) + \(\widehat{AIE}\) + \(\widehat{BAC}\) = 180o

=> 2\(\widehat{AEI}\) = 180o - \(\widehat{BAC}\)

=> \(\widehat{AEI}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (3)

Do \(\Delta\)ABC cân tại A

=> \(\widehat{ABC}\) = \(\widehat{ACB}\)

Áp dụng tc tổng 3 góc trong 1 tg ta có:

\(\widehat{ABC}\) + \(\widehat{ACB}\) + \(\widehat{BAC}\) = 180o

=> 2\(\widehat{ABC}\) = 180o - \(\widehat{BAC}\)

=> \(\widehat{ABC}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (4) Từ (3) và (4) suy ra \(\widehat{AEI}\) = \(\widehat{ABC}\) mà 2 góc này ở vị trí đồng vị nên EI // BC. d) Ta có: BM = \(\frac{1}{2}\)BC = 9cm

Xét \(\Delta\)ABM và \(\Delta\)ACM có:

AB = AC

\(\widehat{BAM}\) = \(\widehat{CAM}\) (tự suy ra)

AM chung

=> \(\Delta\)ABM = \(\Delta\)ACM (c.g.c)

=> \(\widehat{AMB}\) = \(\widehat{AMC}\) (2 góc t/ư)

\(\widehat{AMB}\) + \(\widehat{AMC}\) = 180o (kề bù)

=> \(\widehat{AMB}\) = \(\widehat{AMC}\) = 90o

Do đó AM \(\perp\) BC

=> \(\Delta\)ABM vuông tại M

Áp dụng định lý pytago vào \(\Delta\)ABM vuông tại M có:

AB2 = AM2 + BM2

=> 152 = AM2 + 92

=> AM = 12cm

25 tháng 1 2017

tks nhìu nghe @Hoàng Thị Ngọc Anh

25 tháng 4 2018
c) ∆ BEC có BH và AC là trung tuyến cắt nhau tại M => M là trọng tâm. Kho đó CM = 2/3 AC = 2/3.8=16/3cm
25 tháng 4 2018
a) Xét ∆vuông ABC theo Đ.lý pytago ta có: AB^2+AC^2=BC^2 => 6^2+AC^2= 10^2 => 36+ AC^2= 100 => AC^2 =100-36 => AC^2=64 => AC =8cm. Có BC>AC>AB => góc A> góc B> góc C
Câu 1: Cho tam giác ABC vuông tai A. Kẻ phân giác BD của \(\widehat{ABC}\)( D thuộc AC), trên cạnh BC lấy E sao cho BA = BE.a) Chứng minh tam giác ABD = tam giác EBD và DE vuông góc với BC.b) Giả sử AD= 6cm, DC = 10cm. Tính độ dài đoạn EC.c) Biết tia ED cắt tia BA tại F và gọi M là trung điểm của đoạn FC. Chứng minh ba điểm B,D,M thẳng hàng.Câu 2: Cho tam giác ABC vuông tại A, có Ab = 6cm ; BC = 10cm.a) Tính ACb) Kẻ BD là...
Đọc tiếp

Câu 1: Cho tam giác ABC vuông tai A. Kẻ phân giác BD của \(\widehat{ABC}\)( D thuộc AC), trên cạnh BC lấy E sao cho BA = BE.

a) Chứng minh tam giác ABD = tam giác EBD và DE vuông góc với BC.

b) Giả sử AD= 6cm, DC = 10cm. Tính độ dài đoạn EC.

c) Biết tia ED cắt tia BA tại F và gọi M là trung điểm của đoạn FC. Chứng minh ba điểm B,D,M thẳng hàng.

Câu 2: Cho tam giác ABC vuông tại A, có Ab = 6cm ; BC = 10cm.

a) Tính AC

b) Kẻ BD là phân giác của \(\widehat{ABC}\) (D thuộc AC), kẻ DE vuông góc với BC ( E thuộc BC). Chứng minh DA = DE.

c) Chứng minh BD đi qua trung điểm của AE.

Câu 3: Cho góc xOy ( \(\widehat{xOy}\)không bằng 180) và tia Om là phân giác cuẩ góc xOy. Lấy điểm A thuộc Ox ; B thuộc Oy sao cho OA = OB. Gọi I là giao điểm của Om và AB.

a) Chứng minh tam giác AOI = tam giác BOI

b) Từ I kẻ IE thuộc Ox ( E thuộc Ox ) ; IF vuông góc với Oy ( F thuộc Oy ). Chứng minh tam giác EIF cân.

c) Lấy M trên Ox ( A nằm giữa O và M ) vẽ MN // Ab ( N thuộc Oy ), gọi H là trung điểm của MN =. Chứng minh 3 điểm O, I, H thẳng hàng.

  LÀm ơn giúp với mai mình thi rồi. Vẽ cả hình nhé. Cảm ơn ~

1
27 tháng 2 2019

cau 1 :

A B C E

Xet tam giac ABD va tam giac EBD co : BD chung

goc ABD = goc DBE do BD la phan giac cua goc ABC (gt)

AB = BE (Gt)

=> tam giac ABD = tam giac EBD (c - g - c)

=> goc BAC = goc DEB (dn) 

ma goc BAC = 90 do tam giac ABC vuong tai A (gt)

=> goc DEB = 90 

=> DE _|_ BC (dn)

b, tam giac ABD = tam giac EBD (cau a)

=> AB = DE (dn)

AB = 6 (cm) => DE = 6 cm

DE _|_ BC => tam giac DEC vuong tai E 

=> DC2 = DE2 + CE2 ; DC = 10 cm (gt); DE = 6 cm (cmt)

=> CE2 = 10- 62

=> CE2 = 64

=> CE = 8 do CE > 0