cho tam giác ABC có phân giác AM.biết AB = 24 cm , AC = 32 cm , BC = 35 cm . khi đó độ dài y trong hình là A.20 cm B.18 cm C.10 cm D12 cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCAB có CA^2+CB^2=AB^2
nên ΔCAB vuông tại C
Xét ΔCAB vuông tại C có CH là đường cao
nên CH*AB=CA*CB
=>CH*25=15*20=300
=>CH=12(cm)
b: góc BCD+góc ACD=90 độ
góc BDC+góc HCD=90 độ
mà góc ACD=góc HCD
nên góc BCD=góc BDC
=>ΔBDC cân tại B
c: BC^2+BD^2+CD^2
=BC^2+BC^2+CD^2
=2BC^2+CD^2
=2(BH^2+HC^2)+CH^2+HD^2
=2BH^2+3CH^2+DH^2
Trong △ABC, ta có: AD là đường phân giác của (BAC)
Suy ra: (tính chất đường phân giác)
Mà AB = 15 (cm); AC = 20 (cm)
Nên
Suy ra: (tính chất tỉ lệ thức)
Suy ra:
Trong △ABC, ta có: AD là đường phân giác của (BAC)
Suy ra: (tính chất đường phân giác)
Mà AB = 15 (cm); AC = 20 (cm)
Nên
Suy ra: (tính chất tỉ lệ thức)
Suy ra:
Đặt \(\left\{{}\begin{matrix}BD=x\\CD=y\end{matrix}\right.\) với x;y là các số nguyên dương
Áp dụng định lý phân giác:
\(\dfrac{BD}{AB}=\dfrac{CD}{AC}\Rightarrow\dfrac{x}{35}=\dfrac{y}{50}\Rightarrow y=\dfrac{10x}{7}\)
Do \(y\) nguyên và 10;7 nguyên tố cùng nhau \(\Rightarrow x\) chia hết cho7
Mặt khác theo BĐT tam giác:
\(BC< AB+AC\Rightarrow x+y< 85\)
\(\Rightarrow x+\dfrac{10x}{7}< 85\Rightarrow x< 35\)
BC lớn nhất khi x lớn nhất, số nguyên chia hết cho 7 và nhỏ hơn 35 lớn nhất là 28
Vậy \(x_{max}=28\Rightarrow BC_{max}=28+\dfrac{10.28}{7}=68\)
Tổng độ dài AB và AC là 120 - 50 = 70 (cm)
Độ dài AB là (70 - 10) : 2 = 30 (cm)
Độ dài AC là (70 + 10) : 2 = 40 (cm)
Diện tích tam giác ABC là 30 x 40 : 2 = 600 (cm2)
Chiều cao hạ từ A xuống cạnh AC là 600 : 50 = 12 (cm)
a)
* Ta có: AB + AC + BC = 120 (cm)
Suy ra: AB + AC + 50 (cm) = 120 (cm)
Suy ra: AB + AC = 120 (cm) - 50 (cm)
Suy ra: AB + AC = 70 (cm)
* Mà độ dài cạnh AC lớn hơn AB 10 cm (gt)
* Nên:
AB = ( 70 - 10 ) : 2 = 60 : 2 = 30 (cm)
AC = ( 70 + 10 ) : 2 = 80 : 2 = 40 (cm)
Vậy: AB = 30 cm ; AC = 40 cm
b)
* Diện tích hình tam giác ABC là:
( 40 x 30 ) : 2 = 120 : 2 = 60 (cm)
Vậy diện tích tam giác ABC = 60 cm
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=18^2+20^2=724\)
hay \(BC=2\sqrt{181}cm\)
Vậy: \(BC=2\sqrt{181}cm\)
a: BC=10cm
C=AB+BC+AC=6+8+10=24(cm)
b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔABD=ΔHBD
c: Ta có: ΔABD=ΔHBD
nên DA=DH
mà DH<DC
nên DA<DC
B
B