Chứng tỏ rằng mọi phân số co dạng 2n+3/3n+5,n thuộc N đều là phân số tối giản
Giải nhanh giúp với!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Gọi ƯCLN (2n+3;3n+5)=d
Ta có:
2n+3:d =>3. (2n+3):d
3n+5:d=> 2. (3n+5):d
=> [3. (2n+3) - 2.(3n+5)]:d
=>(6n+9 - 6n-10): d
=> -1:d
=> d={1,-1}
Tick mình nha
Bài 1 : Đặt \(d=Ư\left(n+1;2n+3\right)\)
Từ đó \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Leftrightarrow}}2n+3-\left(2n+2\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy mọi phân số dạng \(\frac{n+1}{2n+3}\left(n\inℕ\right)\) đều là phân số tối giản
Bài 2 : Đặt \(d=Ư\left(2n+3;3n+5\right)\)
Từ đó \(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}\Leftrightarrow}6n+10-\left(6n-9\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1}\)
Vậy mọi phân số dạng \(\frac{2n+3}{3n+5}\left(n\inℕ\right)\) đều là phân số tối giản.
Gọi ƯCLN(n + 1 ; n + 2) = d\(\left(d\inℕ\right)\)
=> \(\hept{\begin{cases}n+1⋮d\\n+2⋮d\end{cases}}\Rightarrow\left(n+2\right)-\left(n+1\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
=> n + 1 ; n + 2 là 2 số nguyên tố cùng nhau
=> \(\frac{n+1}{n+2}\) là phân số tối giản
b) Gọi ƯCLN(2n + 3 ; 3n + 5) = d (d \(\inℕ\))
=> \(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
=> \(1⋮d\Rightarrow d=1\)
=> 2n + 3 ; 3n + 5 là 2 số nguyên tố cùng nhau
=> \(\frac{2n+3}{3n+5}\) là phân số tối giản
a) Gọi ƯC( n + 1 ; n + 2 ) = d
=> n + 2 ⋮ d và n + 1⋮ d
=> n + 2 - ( n - 1 ) ⋮ d
=> 1 ⋮ d => d = 1
=> ƯCLN( n + 1 ; n + 2 ) = 1
hay n+1/n+2 tối giản ( đpcm )
b) Gọi ƯC( 2n + 3 ; 3n + 5 ) = d
=> 2n + 3 ⋮ d và 3n + 5 ⋮ d
=> 6n + 9 ⋮ d và 6n + 10 ⋮ d
=> 6n + 10 - ( 6n + 9 ) ⋮ d
=> 1 ⋮ d => d = 1
=> ƯCLN( 2n + 3 ; 3n + 5 ) = 1
hay 2n+3/3n+5 tối giản ( đpcm )
Bạn ơi có sai đề không?Bởi nếu n là số lẻ thì cả n+1 và n+3 đều là số chẵn ,đều chia hết cho 2 và có thể rút gọn mà,sao là phân số tối giản được
Đặt \(n+1;2n+3=d\)
\(n+1⋮d\Rightarrow2n+2\)(1)
\(2n+3⋮d\)(2)
Lấy 2 - 1 ta có :
\(2n+3-2n-2⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
gọi ƯCLN(2n+3;3n+5)=d
2n+3 chia hết cho d
=>6n+9 chia hết cho d
3n+5 chia hết cho d
=>6n+10 chia hết cho d
=>1 chia hết cho d
=>d=1
\(\Rightarrow\frac{2n+3}{3n+5}\)tối giản
Gọi ƯCLN(2n+3; 3n+5) là d. Ta có:
2n+3 chia hết cho d => 6n+9 chia hết cho d
3n+5 chia hết cho d =? 6n+10 chia hết cho d
=> 6n+10-(6n+9) chia hết cho d
=> 1 chia hết cho d
=> d thuộc Ư(1)
=> d = 1
=> ƯCLN(2n+3; 3n+5) = 1
=> \(\frac{2n+3}{3n+5}\)tối giản (đpcm)
Lời giải:
Gọi $d=ƯCLN(2n+3, 3n+5)$
$\Rightarrow 2n+3\vdots d; 3n+5\vdots d$
$\Rightarrow 2(3n+5)-3(2n+3)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
$\Rightarrow ƯCLN(2n+3, 3n+5)=1$
Do đó $\frac{2n+3}{3n+5}$ là phân số tối giản vơ mọi $n\in\mathbb{N}$