Cho tứ giác ABCD, đáy AD // BC biết BC+AD=AB, Chứng minh tia phân giác góc A và tia phân giác góc B cắt nhau tại trung diểm CD.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Trần Nhật Duy - Toán lớp 8 - Học toán với OnlineMath
a: DC=DI+IC
=>AD+BC=DI+IC
mà CI=BC
nên AD=DI
=>\(\widehat{DAI}=\widehat{DIA}\)
=>\(\widehat{DIA}=\widehat{IAB}\)
=>AB//DI
=>AB//CD
=>ABCD là hình thang
b: AB//CI
=>\(\widehat{ABI}=\widehat{CIB}\)
mà \(\widehat{CBI}=\widehat{CIB}\)
nên \(\widehat{ABI}=\widehat{CBI}\)
=>BI là phân giác của \(\widehat{ABC}\)
a) Theo đề bài ta có: \(\widehat{DAF}+\widehat{ADF}=\frac{\widehat{DAB}+ADC}{2}=\frac{180^o}{2}=90^o\)
Xét tam giác AFD có \(\widehat{DAF}+\widehat{ADF}=90^o\) nên \(\widehat{AFD}=90^o\)
Hay tam giác AFD vuông tại F.
Gọi E là trung điểm AD.
Xét tam giác vuông ADF có FE là trung tuyến ứng với cạnh huyền nên EF = AD/2
Lại có do F là trung điểm BC; E là trung điểm AD nên EF là đường trung bình hình thang.
Từ đó suy ra \(EF=\frac{AB+BC}{2}\)
Vậy nên AD = AB + BC.
b) Giả sử AD = AE + ED.
Gọi E là trung điểm AD. Do AD = AB + CD nên FE = (AB + DC)/2
Ta có E là trung điểm AD. Vậy nên EF là đường trung bình hình thang hay hay Flà trung điểm BC.
Tham khảo : Câu hỏi của Trần Nhật Duy - Toán lớp 8 - Học toán với OnlineMath
Vì AD//BC nên tứ giác ABCD là hình thang có đáy AD và BC
Gọi E là trung điểm CD , F là trung điểm AB => EF là đường trung bình của hình thang ABCD => EF = (AD+BC)/2 = AB/2 = AF = FB
Do đó : Tam giác AFE và tam giác BFE là các tam giác cân => Góc FAE = góc FEA = góc EAD (vì EF // AD) => AE là tia phân giác góc DAB
Tương tự : Góc FEB = góc FBE = góc EBC => BE là tia phân giác góc CBA
Vậy ta có điều phải chứng minh.
Bạn tự vẽ hình nhé ^^
Đề bài của bạn có vấn đề ,bạn xem lại nhé ^^