Chứng minh rằng nếu (a2+b2+c2).(x2+y2+z2) = (ax+by+cz)2 với x,y,z khác 0 thì \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Ai giúp e vs ạ, em cần gấp lắm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt x/a=y/b=z/c=k
=>x=a.k,
y=b.k
z=c.k
=>(a^2k^2+b^2k^2+c^2k^2)(a^2+b^2+c^2)=k^2.(a^2+b^2+c^2)^2(1)
(ax+by+cz)^2=(a.a.k+b.b.k+c.c.k)^2=(a^2.k+b^2.k+c^2.k)^2
=k^2(a^2+b^2+c^2)(2)
từ (1)(2)=> nếu x/a=y/b=z/c thì (x2 + y2 + z2) (a2 + b2 + c2) = (ax + by + cz)2
=>
\(ax+by+cz\\ =x\left(x^2-yz\right)+y\left(y^2-xz\right)+z\left(z^2-xy\right)\\ =x^3+y^3+z^3-3xyz\\ =\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\\ =\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
Lại có \(a+b+c=x^2+y^2+z^2-xy-yz-xz\)
Vậy ta được đpcm
Có: \(a+b+c=1\Leftrightarrow\left(a+b+c\right)^2=1\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}\)
\(\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{\left(x+y+z\right)^2}{\left(a+b+c\right)^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
\(\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\) (do \(\left(a+b+c\right)^2=a^2+b^2+c^2=1\))
Sửa đề thành vầy mới làm dc bạn\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)
\(\Rightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)\(=a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)
\(\Rightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)
\(-a^2x^2-b^2y^2-c^2z^2-2axby-2bycz-2axcz=0\)
\(\Rightarrow a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2-2axby-2bycz-2axcz=0\)
\(\Rightarrow a^2y^2-2axby+b^2x^2+a^2z^2-2axcz+c^2x^2+b^2z^2-2bycz+c^2y^2=0\)
\(\Rightarrow\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)
\(\Rightarrow ay-bx=0,az-cx=0,bz-cy=0\)
\(\Rightarrow ay=bx,az=cx,bz=cy\)
\(\Rightarrow\frac{a}{x}=\frac{b}{y},\frac{a}{x}=\frac{c}{z},\frac{b}{y}=\frac{c}{z}\)
\(\Rightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\left(dpcm\right)\)
Chúc bạn học tốt . Chọn cho mình nha cảm ơn
năm nay mình mới lên lớp 6