K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2019

A B O C H M E I P

a) Ta thấy ^AMB chắn nửa đường tròn (O) đường kính AB nên ^AMB = 900

Khi đó tứ giác EHBM có ^EMB + ^EHB = 900 + 900 = 1800 => Tứ giác EHBM nội tiếp (đpcm).

b) Tương tự câu a thì ^ACB = 900 => \(\Delta\)ABC vuông tại C có đường cao CH

=> AC2 = AH.AB (Hệ thức lượng trong tam giác vuông) (đpcm).

Có ^ACE = ^ACH = ^ABC (Cùng phụ ^BCH) = ^AMC (2 góc nội tiếp cùng chắn cung AC)

Xét \(\Delta\)AEC và \(\Delta\)ACM: ^ACE = ^AMC (cmt), ^CAE = ^MAC (góc chung)

=> \(\Delta\)AEC ~ \(\Delta\)ACM (g.g) => \(\frac{AC}{AM}=\frac{CE}{MC}\)=> AC.MC = AM.CE (đpcm).

c) Gọi I là tâm ngoại tiếp của \(\Delta\)CEM. Trước hết ta chỉ ra điểm I thuộc đường thẳng BC.

Thật vậy: Vì (I) ngoại tiếp \(\Delta\)CEM nên \(\Delta\)EIC cân tại I

=> ^ICE = 900 - ^EIC/2 = 900 - ^EMC = 900 - ^ABC = ^HCB = ^ECB

Do I,B nằm cùng phía so với CE nên hai tia CI,CB trùng nhau hay B,I,C thẳng hàng

Khi đó điểm I di chuyển trên đường thẳng BC. Gọi HP vuông góc BC tại P

Vì khoảng cách từ H đến I là IH nên HI < HP. Do C,B,H cố định nên HP không đổi

Vậy Max IH = HP = const.

Cách dựng điểm M thỏa mãn đề:

M A B C H O I E 0

B1: Dựng HI vuông góc với BC tại I

B2: Vẽ đường tròn tâm I bán kính IC cắt (O) và CH lần lượt tại M0 và E

Lúc này, I là tâm ngoại tiếp của tam giác CEM và M0 là điểm M cần tìm.

7 tháng 6 2019

Sửa: IH > HP và Min IH = PH = const. Mình nhầm dấu chút xíu :D 

14 tháng 11 2017

bạn biết cách giải bài này chưa???

14 tháng 11 2017

chỉ mik vs

3 tháng 4 2017

- Đường tròn ngoại tiếp tam giác là đường tròn đi qua ba đỉnh của tam giác.

- Tâm đường tròn ngoại tiếp tam giác là giao điểm của các đường trung trực của các cạnh tam giác.

23 tháng 4 2017

Đường tròn ngoại tiếp tam giác là đường tròn đi qua ba đỉnh của tam giác. Tâm đường tròn ngoại tiếp tam giác là giao điểm của các đường trung trực của các cạnh tam giác.