Trình bày chi tiết giúp em nha.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\dfrac{x}{x+2}+\dfrac{8x+8}{x^2+2x}-\dfrac{x+2}{x}\right):\left(\dfrac{x^2-x-3}{x^2+2x}+\dfrac{1}{x}\right)\)
\(\Leftrightarrow A=\left(\dfrac{x^2}{x\left(x+2\right)}+\dfrac{8x+8}{x\left(x+2\right)}-\dfrac{\left(x+2\right)^2}{x\left(x+2\right)}\right):\left(\dfrac{x^2-x-3}{x\left(x+2\right)}+\dfrac{x+2}{x\left(x+2\right)}\right)\)
\(\Leftrightarrow A=\dfrac{x^2+8x+8-\left(x+2\right)^2}{x\left(x+2\right)}:\dfrac{x^2-x-3+x+2}{x\left(x+2\right)}\)
\(\Leftrightarrow A=\dfrac{x^2+8x+8-x^2-4x-4}{x\left(x+2\right)}:\dfrac{x^2-1}{x\left(x+2\right)}\)
\(\Leftrightarrow A=\dfrac{4x+4}{x\left(x+2\right)}.\dfrac{x\left(x+2\right)}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow A=\dfrac{4\left(x+1\right)}{x\left(x+2\right)}.\dfrac{x\left(x+2\right)}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow A=\dfrac{4}{x-1}\)
\(A=\dfrac{x^2+8x+8-x^2-4x-4}{x\left(x+2\right)}:\dfrac{x^2-x-3+x^2+2x}{x\left(x+2\right)}\)
\(=\dfrac{4\left(x+1\right)}{x-3}\)
\(y=\dfrac{x-1}{x+2}\left(x\ne-2\right)\Rightarrow y'=\dfrac{\left(x+2\right)-\left(x-1\right)}{\left(x+2\right)^2}=\dfrac{3}{\left(x+2\right)^2}\)
Giả sử d là tiếp tuyến cần tìm của đths trên
a. d đi qua \(N\left(-1;-2\right)\) . Suy ra : HSG của d : \(\dfrac{3}{\left(-1+2\right)^2}=3\)
PTTT d : \(y=3\left(x+1\right)-2=3x+1\)
b.d có hđtđ \(x_o=3\) \(\Rightarrow y_o=\dfrac{3-1}{3+2}=\dfrac{2}{5};y'=\dfrac{3}{25}\)
PTTT d : \(y=\dfrac{3}{25}\left(x-3\right)+\dfrac{2}{5}=\dfrac{3x}{25}+\dfrac{1}{25}\)
c. Tung độ tiếp điểm yo = 9 nên : \(\dfrac{x_o-1}{x_o+2}=9\Leftrightarrow x_o=-\dfrac{19}{8}\)
y' = 64/3
PTTT d : \(y=\dfrac{64}{3}\left(x+\dfrac{19}{8}\right)+9=\dfrac{64}{3}x+\dfrac{179}{3}\)
d. Ta có : \(\dfrac{3}{\left(x_o+2\right)^2}=\dfrac{1}{3}\Leftrightarrow\left[{}\begin{matrix}x_o+2=3\\x_o+2=-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x_o=1\\x_o=-5\end{matrix}\right.\)
Với xo = 1 \(\Rightarrow y_o=0\) . PTTT d : y = 1/3(x-1) = 1/3x - 1/3
Với xo = -5 \(\Rightarrow y_o=2\) . PTTT d : \(y=\dfrac{1}{3}\left(x+5\right)+2=\dfrac{1}{3}x+\dfrac{11}{3}\)
\(A=\dfrac{31\cdot\left(31^{12}-1\right)}{31\left(31^{13}+1\right)}=\dfrac{31^{13}+1-32}{31\left(31^{13}+1\right)}=\dfrac{1}{31}-\dfrac{32}{31^{14}+31}\)
\(B=\dfrac{31\left(31^{13}-1\right)}{31\left(31^{14}+1\right)}=\dfrac{1}{31}-\dfrac{32}{31^{15}+31}\)
Dễ thấy \(31^{14}+31< 31^{15}+31\Rightarrow\dfrac{32}{31^{14}+31}>\dfrac{32}{31^{15}+31}\\ \Rightarrow\dfrac{1}{31}-\dfrac{32}{31^{14}+31}< \dfrac{1}{31}-\dfrac{32}{31^{15}+31}\)
Vậy A < B
\(\dfrac{x-1}{3}=\dfrac{2-x}{-2}\)
⇔ \(\dfrac{x-1}{3}=\dfrac{x-2}{2}\)
⇔ \(3x-6-2x+2=0\)
⇔ \(x-4=0\)
⇒ \(x=4\)
Bài 1:
a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=3.6\left(cm\right)\\CH=6.4\left(cm\right)\end{matrix}\right.\)
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HF là đường cao ứng với cạnh huyền AB, ta được:
\(AF\cdot AB=AH^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:
\(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AF\cdot AB=AE\cdot AC\)
Bài 9:
a: 15:4=375%
b: 13:20=65%
c: 13.8:1.5=920%
d: \(2:2\dfrac{1}{2}=2:2.5=80\%\)
Làm tròn chưa ạ?