Cho hai đơn thức A= 1/5.x^2.y^3 và B=1/6.x^3.y^2.
a)Hãy xác định hệ số, phần biến và bậc của 2 đơn thức A và B
b)Tính A.B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Đơn thức A: Hệ số là 1/5
Phần biến là \(x^2;y^3\)
Bậc là 5
Đơn thức B: Hệ số là 1/6
Phần biến là \(x^3;y^2\)
Bậc là 5
b: \(A\cdot B=\dfrac{1}{30}x^5y^5\)
a, \(A=2x^5yz^8\)
b, hệ số 2 ; biến x^5yz^8 ; bậc 14
c, Thay x = -1 ; y = 1 ta được 2 . (-1) . 1 = -2
\(C=A\cdot B\)
\(\Rightarrow C=\left(-18x^3y^4z^5\right)\cdot\left[\dfrac{2}{9}x^5\left(y^2\right)^2\right]\)
\(\Rightarrow C=\left(-18x^3y^4z^5\right)\cdot\left(\dfrac{2}{9}x^5y^4\right)\)
\(\Rightarrow C=\left(-18\cdot\dfrac{2}{9}\right)\cdot\left(x^3\cdot x^5\right)\cdot\left(y^4\cdot y^4\right)\cdot z^5\)
\(\Rightarrow C=-4x^8y^8z^5\)
Phần biến là: \(x^8y^8z^5\)
Phần hệ số của C là: \(-4\)
Bậc của C là: \(8+8+5=21\)
a: \(M=\left(-\dfrac{2}{3}xy^3\right)^3\cdot\left(3xy^2\right)^3\)
\(=-\dfrac{8}{27}\cdot x^3y^9\cdot27\cdot x^3y^6\)
\(=-8x^6y^{15}\)
b: Hệ số của M là -8
Phần biến của M là \(x^6;y^{15}\)
Bậc của M là 6+15=21
c: Thay x=-1 và y=1 vào M, ta được:
\(M=-8\cdot\left(-1\right)^6\cdot1^{15}=-8\)
a) \(A=\frac{2}{3}x^2y^3\left(-\frac{6}{5}xy\right)\)
\(A=-\frac{4}{5}x^3y^4\)
+Hệ số : \(-\frac{4}{5}\)
+Biến : x3y4
+Bậc : 7
B=(-3x2y3)(5x2y)
B=-15x4y4
+Hệ số : -15
+Biến x4y4
+Bậc : 8
b) \(A.B=\left(-\frac{4}{5}x^3y^4\right)\left(-15x^4y^4\right)\)
\(=12x^7y^8\)
#H
(Sai=sửa)
ai bt giải giúp mik vs ạ:>
A = 1/5x^2y^3
hệ số 1/5 ; biến x^2y^3 ; bậc 5
B = 1/6x^3y^2
hệ số 1/6 ; biến x^3y^2 ; bậc 5
b, \(AB=\dfrac{1}{5}x^2y^3.\dfrac{1}{6}x^3y^2=\dfrac{1}{30}x^5y^5\)