Cho góc nhọn xOy. Gọi M là một điểm thuộc tia phân giác của góc xOy. Kẻ MA vuông góc với Ox ( A Î Ox), kẻ MB vuông góc với Oy ( B Î Oy). Tia AM cắt OB tại H, tia BM cắt OA tại K
a) Chứng minh : MA = MB
b) Chứng minh: DOAH = DOBK; DOHK là tam giác gì? Vì sao? c) Tính MK, biết OK = 10cm, OB = 6cm, MA = 3cm
d) Gọi G là trung điểm của HK. Chứng minh O, M, G thẳng hàng
a: Xét ΔOAM vuông tại A và ΔOBM vuông tại B có
OM chung
\(\widehat{AOM}=\widehat{BOM}\)
Do đó: ΔOAM=ΔOBM
Suy ra: MA=MB
b: Xét ΔOAH vuông tại A và ΔOBK vuông tại B có
OA=OB
\(\widehat{AOH}\) chung
Do đó: ΔOAH=ΔOBK
Suy ra: OH=OK
hay ΔOHK cân tại O
d: Ta có: ΔOHK cân tại O
mà OM là đường phân giác
nên OM là đường trung tuyến ứng với cạnh HK
mà G là trung điểm của HK
nên O,M,G thẳng hàng