Chứng tỏ rằng:
(x-3)(x+5)+20 lớn hơn hoặc bằng 4 , Dấu "=" xảy ra khi nào?
Dùng hằng đẳng thức để tính nhanh:
a4mb4m-(ambm+1)(a2mb2m+1)(ambm-1) (m thuộc N*)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(x\notin\left\{-1;3\right\}\)
Ta có: \(P=\frac{x^3-3}{x^2-2x-3}-\frac{2\left(x-3\right)}{x+1}+\frac{x+3}{3-x}\)
\(=\frac{x^3-3}{\left(x+1\right)\left(x-3\right)}-\frac{2x-6}{x+1}-\frac{x+3}{x-3}\)
\(=\frac{x^3-3}{\left(x+1\right)\left(x-3\right)}-\frac{\left(2x-6\right)\left(x-3\right)}{\left(x+1\right)\left(x-3\right)}-\frac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+1\right)}\)
\(=\frac{x^3-3-\left(2x^2-12x+18\right)-\left(x^2+4x+3\right)}{\left(x-3\right)\left(x+1\right)}\)
\(=\frac{x^3-3-2x^2+12x-18-x^2-4x-3}{\left(x-3\right)\left(x+1\right)}\)
\(=\frac{x^3-3x^2+8x-24}{\left(x-3\right)\left(x+1\right)}\)
\(=\frac{x^2\left(x-3\right)+8\left(x-3\right)}{\left(x-3\right)\left(x+1\right)}=\frac{\left(x-3\right)\left(x^2+8\right)}{\left(x-3\right)\left(x+1\right)}\)
\(=\frac{x^2+8}{x+1}\)
b) Để P nguyên thì \(x^2+8⋮x+1\)
\(\Leftrightarrow x^2+2x+1-2x+7⋮x+1\)
\(\Leftrightarrow\left(x+1\right)^2-2x+7⋮x+1\)
mà \(\left(x+1\right)^2⋮x+1\)
nên \(-2x+7⋮x+1\)
\(\Leftrightarrow-2x-2+9⋮x+1\)
mà \(-2x-2⋮x+1\)
nên \(9⋮x+1\)
\(\Leftrightarrow x+1\inƯ\left(9\right)\)
\(\Leftrightarrow x+1\in\left\{1;-1;3;-3;9;-9\right\}\)
\(\Leftrightarrow x\in\left\{0;-2;2;-4;8;-10\right\}\)(tm)
Vậy: Khi \(x\in\left\{0;-2;2;-4;8;-10\right\}\) thì P có giá trị nguyên
c)
Khi x>-1 thì x+1>0
mà \(x^2+8\ge0\forall x\)
nên khi x>-1 và \(x\ne3\) thì \(P=\frac{x^2+8}{x+1}>0\)
Để \(P\ge4\) thì \(\frac{x^2+8}{x+1}\ge4\)
\(\Leftrightarrow x^2+8\ge\left(x+1\right)\cdot4\)
\(\Leftrightarrow x^2+8\ge4x+4\)
\(\Leftrightarrow x^2+8-4x-4\ge0\)
\(\Leftrightarrow x^2-4x+4\ge0\)
\(\Leftrightarrow\left(x-2\right)^2\ge0\)(luôn đúng)
Dấu '=' xảy ra khi x-2=0
hay x=2
1 ) Vì :
\(\left|x\right|\ge0\)
\(\left|x-1\right|\ge0\)
\(\left|x+3\right|\ge0\)
\(\Rightarrow\left|x\right|+\left|x-1\right|+\left|x+3\right|\ge0\)
\(\Rightarrow4x-4\ge0\Rightarrow4x\ge4\Rightarrow x\ge1\) (đpcm)
2 ) Vì \(x\ge1\) nên
\(x+x-1+x+3=4x-4\)
\(\Leftrightarrow3x+2=4x-4\)
\(\Leftrightarrow3x-4x=-4-2\)
\(\Rightarrow-x=-6\)
\(\Rightarrow x=6\)
a, Ta có /x/ + /x-1/ + /x+3/ = 4x - 4
/x/ + /x-1/ + /x+3/ = 4 ( x - 1 )
Vì /x/ ; /x-1/ ;/x+3/ >= 0
=> /x/ + /x-1/ + /x+3/ >= 0
=> x lớn hơn hoặc = 1
a) Xét thấy vế trái là tổng của các GTTĐ nên vế trái luôn lớn hơn hoặc bằng 0
\(\Rightarrow4x-4\ge0\)
\(\Leftrightarrow4x\ge4\)
\(\Leftrightarrow x\ge1\)( đpcm )
b) Từ điều kiện \(x\ge1\)ta có biến đổi :
\(x+x-1+x+3=4x-4\)
\(3x+2=4x-4\)
\(4x-3x=2+4\)
\(x=6\)
Vậy x = 6
1 D = (x-1)2 + x = 1.
=>x2-x+1 +x=1
=>x2+1=1
=>x2=0 => x=0
ta có (x-3)(x+5)+ 20
= x^2 +2x - 15 +20
= x^2 + 2x +1 - 16 + 20
= (x+1)^2 - 4
vì \(\left(x+1\right)^2\ge0\)với mọi x
\(\left(x+1\right)^2-4\ge-4\) (cộng cả hai vế với -4)
\(4-\left(x+1\right)^2\le4\) ( nhân cả hai vế với -1 )
Giả sử (x-3)(x+5)+20 lớn hơn hoặc bằng 4 với mọi x thuộc R
<=>(x-3)(x+5)+20-4 lớn hơn hoặc bằng 0
<=>X2+2x-15+20-4 lớn hơn hoặc bằng o
<=>x2+2x+1 lớn hơn hoặc bằng 0
<=>(x+1)2 lớn hơn hoặc bằng 0 ( luôn đúng )
Vậy (x-3)(x+5)+20 lớn hơn hoặc bằng 4
(x-3)(x+5)+20 lớn hơn hoặc bằng 4
<=>( x+1)2 =0
Dấu "=" xảy ra khi và chỉ khi x+1=0
<=>x=0-1=-1
a4mb4m-(ambm+1)(a2m b2m+1)(ambm-1)
=a4mb4m-(ambm+1)(ambm-1)(a2mb2m+1)
=a4mb4m-(a2mb2m-1)(a2mb2m+1)
=a4mb4m-a4mb4m +1
=1