K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2016

ta có (x-3)(x+5)+ 20

       = x^2 +2x - 15 +20

      = x^2 + 2x +1 - 16 + 20

     = (x+1)^2 - 4 

vì \(\left(x+1\right)^2\ge0\)với mọi x

\(\left(x+1\right)^2-4\ge-4\) (cộng cả hai vế với -4)

\(4-\left(x+1\right)^2\le4\) ( nhân cả hai vế với -1 )

30 tháng 6 2016

Giả sử (x-3)(x+5)+20 lớn hơn hoặc bằng 4 với mọi x thuộc R

<=>(x-3)(x+5)+20-4 lớn hơn hoặc bằng 0

<=>X2+2x-15+20-4 lớn hơn hoặc bằng o

<=>x2+2x+1 lớn hơn hoặc bằng 0

<=>(x+1)2 lớn hơn hoặc bằng 0 ( luôn đúng )

Vậy (x-3)(x+5)+20 lớn hơn hoặc bằng 4

(x-3)(x+5)+20 lớn hơn hoặc bằng 4

<=>( x+1)2 =0

Dấu "=" xảy ra khi và chỉ khi x+1=0

<=>x=0-1=-1

a4mb4m-(ambm+1)(a2m b2m+1)(ambm-1)

=a4mb4m-(ambm+1)(ambm-1)(a2mb2m+1)

=a4mb4m-(a2mb2m-1)(a2mb2m+1)

=a4mb4m-a4mb4m +1

=1

a) ĐKXĐ: \(x\notin\left\{-1;3\right\}\)

Ta có: \(P=\frac{x^3-3}{x^2-2x-3}-\frac{2\left(x-3\right)}{x+1}+\frac{x+3}{3-x}\)

\(=\frac{x^3-3}{\left(x+1\right)\left(x-3\right)}-\frac{2x-6}{x+1}-\frac{x+3}{x-3}\)

\(=\frac{x^3-3}{\left(x+1\right)\left(x-3\right)}-\frac{\left(2x-6\right)\left(x-3\right)}{\left(x+1\right)\left(x-3\right)}-\frac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+1\right)}\)

\(=\frac{x^3-3-\left(2x^2-12x+18\right)-\left(x^2+4x+3\right)}{\left(x-3\right)\left(x+1\right)}\)

\(=\frac{x^3-3-2x^2+12x-18-x^2-4x-3}{\left(x-3\right)\left(x+1\right)}\)

\(=\frac{x^3-3x^2+8x-24}{\left(x-3\right)\left(x+1\right)}\)

\(=\frac{x^2\left(x-3\right)+8\left(x-3\right)}{\left(x-3\right)\left(x+1\right)}=\frac{\left(x-3\right)\left(x^2+8\right)}{\left(x-3\right)\left(x+1\right)}\)

\(=\frac{x^2+8}{x+1}\)

b) Để P nguyên thì \(x^2+8⋮x+1\)

\(\Leftrightarrow x^2+2x+1-2x+7⋮x+1\)

\(\Leftrightarrow\left(x+1\right)^2-2x+7⋮x+1\)

\(\left(x+1\right)^2⋮x+1\)

nên \(-2x+7⋮x+1\)

\(\Leftrightarrow-2x-2+9⋮x+1\)

\(-2x-2⋮x+1\)

nên \(9⋮x+1\)

\(\Leftrightarrow x+1\inƯ\left(9\right)\)

\(\Leftrightarrow x+1\in\left\{1;-1;3;-3;9;-9\right\}\)

\(\Leftrightarrow x\in\left\{0;-2;2;-4;8;-10\right\}\)(tm)

Vậy: Khi \(x\in\left\{0;-2;2;-4;8;-10\right\}\) thì P có giá trị nguyên

c)

Khi x>-1 thì x+1>0

\(x^2+8\ge0\forall x\)

nên khi x>-1 và \(x\ne3\) thì \(P=\frac{x^2+8}{x+1}>0\)

Để \(P\ge4\) thì \(\frac{x^2+8}{x+1}\ge4\)

\(\Leftrightarrow x^2+8\ge\left(x+1\right)\cdot4\)

\(\Leftrightarrow x^2+8\ge4x+4\)

\(\Leftrightarrow x^2+8-4x-4\ge0\)

\(\Leftrightarrow x^2-4x+4\ge0\)

\(\Leftrightarrow\left(x-2\right)^2\ge0\)(luôn đúng)

Dấu '=' xảy ra khi x-2=0

hay x=2

24 tháng 2 2017

1 ) Vì :

\(\left|x\right|\ge0\)

\(\left|x-1\right|\ge0\)

\(\left|x+3\right|\ge0\)

\(\Rightarrow\left|x\right|+\left|x-1\right|+\left|x+3\right|\ge0\)

\(\Rightarrow4x-4\ge0\Rightarrow4x\ge4\Rightarrow x\ge1\) (đpcm)

2 ) Vì \(x\ge1\) nên 

\(x+x-1+x+3=4x-4\)

\(\Leftrightarrow3x+2=4x-4\)

\(\Leftrightarrow3x-4x=-4-2\)

\(\Rightarrow-x=-6\)

\(\Rightarrow x=6\)

10 tháng 1 2019

a, Ta có /x/ + /x-1/ + /x+3/ = 4x - 4 

            /x/ + /x-1/ + /x+3/ = 4 ( x - 1 ) 

Vì /x/ ; /x-1/ ;/x+3/ >= 0 

=> /x/ + /x-1/ + /x+3/ >= 0 

=> x lớn hơn hoặc = 1 

10 tháng 1 2019

a) Xét thấy vế trái là tổng của các GTTĐ nên vế trái luôn lớn hơn hoặc bằng 0

\(\Rightarrow4x-4\ge0\)

\(\Leftrightarrow4x\ge4\)

\(\Leftrightarrow x\ge1\)( đpcm )

b) Từ điều kiện \(x\ge1\)ta có biến đổi :

\(x+x-1+x+3=4x-4\)

\(3x+2=4x-4\)

\(4x-3x=2+4\)

\(x=6\)

Vậy x = 6

4 tháng 7 2017

la+bl2=(a+b)2=a2+2ab+b2

(lal+lbl)2=a2+2labl+b2

mà 2labl \(\ge\)2ab

=>la+bl2\(\le\)(lal+lbl)2

=>la+bl\(\le\)lal+lbl

dấu bằng xảy ra khi ab\(\ge0\)

14 tháng 12 2016

Nguyên trang bất đăng thức Bunhacoxki  rồi. 

26 tháng 8 2018

1 D = (x-1)2 + x = 1.

    =>x2-x+1 +x=1

    =>x2+1=1

    =>x2=0 => x=0

26 tháng 8 2018

\(D=\left(x-1\right)^2+x\)

\(D=1\)  =>   \(\left(x-1\right)^2+x=1\)

<=>  \(\left(x-1\right)^2+x-1=0\)

<=>  \(\left(x-1\right)\left(x-1+1\right)=0\)

<=>  \(x\left(x-1\right)=0\)

<=>  \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vậy...

Bài 2:   thiếu đề