Tam giác ABC có vuông không, nếu như ba đường cao có độ dài lần lượt là
a) 3cm, 4cm, 5cm
b) 12cm, 15cm, 20cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a+b+c=60
S=0,5*a*12=0,5*b*15=0,5*c*20
=> 12a=15b=20c
<=> 12a/60=15b/60=20c/60
=> a/5=b/4=c/3=60/12=5
Do đó a/5=5=>a=25
b/4=5=>b=20
c/3=5=>c=15
Đáp số: 7,2 cm.
Đúng 100% luôn!
Ai tk cho mình mình tk lại.
Gọi các cạnh của tam giác lần lượt là a,b,c .
Theo đề bài, ta có:
a+b+c= 60(cm)
và \(\frac{12a}{2}=\frac{15b}{2}=\frac{20c}{2}=S\)
\(\Rightarrow a=\frac{2S}{12}\)
\(b=\frac{2S}{15}\)
\(c=\frac{2S}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{12a+15b+20c}{2+2+2}=S\)
\(12\left(a+b+c\right)+3b+8c=6\cdot S\)
\(12\cdot60+3b+8c=6S\)
\(720+3\cdot\frac{2S}{15}+8\cdot\frac{2S}{20}=6S\)
\(720+\frac{6}{15}S+\frac{16}{20}S=6S\)
\(720+\frac{2}{5}S+\frac{4}{5}S=6S\)
\(720+\frac{6}{5}S=6S\)
\(6S-\frac{6}{5}S=720\)
\(\frac{24}{5}S=720\)
\(S=150\left(cm^2\right)\)
\(\Rightarrow a=\frac{2S}{12}=\frac{2\cdot150}{12}=\frac{300}{12}=25\left(cm\right)\)
\(b=\frac{2S}{15}=\frac{2\cdot150}{15}=\frac{300}{15}=20\left(cm\right)\)
\(c=\frac{2S}{20}=\frac{2\cdot150}{20}=\frac{300}{20}=15\left(cm\right)\)
Vậy độ dài 3 cạnh của tam giác là : 25cm, 20cm, 15cm.
5:
1: BE//AC
AC vuông góc BD
=>BE vuông góc BD
=>ΔBED vuông tại B
2:
DH=căn BD^2-BH^2=9cm
ΔBED vuông tại B có BH là đường cao
nên BD^2=DH*DE
=>DE=15^2/9=25cm
BE=căn 25^2-15^2=20(cm)
Gọi các đường cao có độ dài là :12,15,20 (cm) lần lượt là a,b,c
a/12=b/15=c/20 và a+b+c=60
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
a/12=b/15=c/20=a+b+c/12+15+20=60/47
Suy ra tự làm tiếp
độ dài các cạnh của tam giác tỉ lệ nghịch với chiều cao
gọi độ dài ba cạnh của hình tam giác là a,b,c
ta có: a+b+c= 60 12a=15b =20c
suy ra a/5 = b/4 = c 3
theo tính chất tỉ lệ thức ,tả co :
a/5 = b/4 = c/3= [a+b+c] / [ 5 + 4+ 3] = 60/12 /= 5
suy ra a = 5.5= 25
b = 5. 4= = 20
c=5 . 3 = 15
vậy độ dài 3 cạnh là :25 cm 20cm 15 cm
k mk nha
a) ta có : 52=32+42
=> tam giác ABC vuông ( theo định lý Pi-ta-go đảo )
b) ta có : 202<122+152
=> tam giác ABC không vuông