Tinh tich cac so :
(-2004).(-2003).....*2005
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2003/2004 + 2004/2005 + 2005/2003
= 1 - 1/2004 + 1 - 1/2005 + 1 + 1/2003 + 1/2003
=(1+1+1)-(1/2004 - 1/2003 + 1/2005 - 1/2003)
= 3 - (1/2004 - 1/2003 + 1/2005 - 1/2003)
Vì 1/2004 < 1/2003 ; 1/2005 < 1/2003
=>1/2004 - 1/2003 + 1/2005 - 1/2003 < 0
=> 3 - (...) > 3
Vậy. ...
K mình nha
a) \(\frac{2005.2007-1}{2004+2005.2006}=\frac{\left(2014+1\right).2007-1}{2004+2005.2006}=\frac{2004+2005.2007-1}{2004+2005-2006}=\frac{2004+2005.2006}{2004+2005.2006}=1\)
\(\frac{2003}{2004}+\frac{2004}{2005}+\frac{2005}{2003}=1-\frac{1}{2004}+1-\frac{1}{2005}+1+\frac{2}{2003}\)
\(=3+\left(\frac{1}{2003}-\frac{1}{2004}\right)+\left(\frac{1}{2003}-\frac{1}{2005}\right)\)
Do \(\frac{1}{2003}>\frac{1}{2004}>\frac{1}{2005}.\) nên \(\left(\frac{1}{2003}-\frac{1}{2004}\right)+\left(\frac{1}{2003}-\frac{1}{2005}\right)>0\)
Vì vậy \(3+\left(\frac{1}{2003}-\frac{1}{2004}\right)+\left(\frac{1}{2003}-\frac{1}{2005}\right)>3\) (đpcm)
\(A=\frac{2003}{2004}+\frac{2004}{2005}+\frac{2005}{2003}\)
\(=(1-\frac{1}{2004})+(1-\frac{1}{2005})+(1+\frac{2}{2003})\)
\(=3+(\frac{1}{2003}+\frac{1}{2003}-\frac{1}{2004}-\frac{1}{2005})\)
Do\(\frac{1}{2003}\)>\(\frac{1}{2004}\)>\(\frac{1}{2005}\)
\(\Rightarrow\frac{1}{2003}+\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}\)>\(0\)
\(\Rightarrow3+(\frac{1}{2003}-\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2005})\)>\(3\)
\(\Rightarrow A\)>\(3\)
\(\frac{2003\cdot2004+2005\cdot10+1994}{2005\cdot2004-2003\cdot2004}\)(dấu \(\cdot\)là dấu nhân)
\(=\frac{2003\cdot2004+\left(2004+1\right)\cdot10+1994}{2004\cdot\left(2005-2003\right)}\)
\(=\frac{2003\cdot2004+2004\cdot10+10+1994}{2004\cdot2}\)
\(=\frac{2003\cdot2004+2004\cdot10+2004}{2004\cdot2}\)
\(=\frac{2004\cdot\left(2003+10+1\right)}{2004\cdot2}\)
\(=\frac{2014}{2}=1007\)
Câu hỏi của linh phạm - Toán lớp 6 - Học toán với OnlineMath
Ta có:
N=\(\dfrac{2003+2004}{2004+2005}\)=\(\dfrac{2003}{2004+2005}\)+\(\dfrac{2004}{2004+2005}\)
Ta thấy:
\(\dfrac{2003}{2004+2005}\)<\(\dfrac{2003}{2004}\)(1)
\(\dfrac{2004}{2004+2005}\)<\(\dfrac{2004}{2005}\)(2)
Từ (1) và (2) --> M=\(\dfrac{2003}{2004}\)+\(\dfrac{2004}{2005}\)>\(\dfrac{2003}{2004+2005}\)+\(\dfrac{2004}{2004+2005}\)=N
Vậy M>N