1. Cho a>=2. Tìm GTNN của P= a + 1/a.
2. Cho x và y >0 thỏa mãn x+y+xy=1
Tìm GTNN của P=1/x+y +1/x +1/y
3.Cho x và y thuộc tâp hợp số R thỏa mãn x + y =1
Tìm GTNN của P= x3 + y3 +xy.
Làm ơn giải giùm mình nhé!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2 nhân p vs x+y+xy rồi t định áp dụng bđt (x+y+z)(1/x+1/y+1/z)>=9 nhưng vướng
\(x+y=1\Rightarrow y=1-x\)
\(P=x^3+\left(1-x\right)^3+x\left(1-x\right)\)
\(P=2x^2-2x+1=\dfrac{1}{2}\left(2x-1\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)
\(P_{min}=\dfrac{1}{2}\) khi \(x=y=\dfrac{1}{2}\)
1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)
\(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)
max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)
\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t