Giá trị x>0 thỏa mãn
\(\frac{x}{15}=\frac{y}{9}\) và xy=15
giúp mình giải nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta cho
x /15 = y/9 =k
=> x= 15k
y=9k
thay vao xy =15 ta co
15k.9k =15
135.k2=15
k2 = 1/9
k =1/3 hay -1/3
mà x lớn hơn 0 =>k=1/3
x/15 =1/3 =>x=5
Bài 2:
TH1: \(x\le-\frac{5}{2}\)
<=>\(-\left(x+\frac{5}{2}\right)+\frac{2}{5}-x=0\)<=>\(-x-\frac{5}{2}+\frac{2}{5}-x=0\)<=>\(-\frac{21}{10}-2x=0\)
<=>\(-2x=\frac{21}{10}\)<=>\(x=\frac{-21}{20}\)(loại)
TH2: \(-\frac{5}{2}< x\le\frac{2}{5}\)
<=>\(x+\frac{5}{2}+\frac{2}{5}-x=0\)<=>\(\frac{29}{10}=0\)(loại)
TH3: \(x>\frac{2}{5}\)
<=>\(x+\frac{5}{2}+x-\frac{2}{5}=0\)<=>\(2x+\frac{21}{10}=0\)<=>\(2x=-\frac{21}{10}\)<=>\(x=-\frac{21}{20}\)(loại)
Vậy không có số x thỏa mãn đề bài
Bài 1:
Vì \(\left(x-2\right)^2\ge0\) nên\(\left(x-2\right)^2\le0\) khi \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Bài 3:
Đặt \(\frac{x}{15}=\frac{y}{9}=k\Rightarrow\hept{\begin{cases}x=15k\\y=9k\end{cases}}\)
Theo đề bài: xy=15 <=> 15k.9k=135k2=15 <=> k2=1/9 <=> k=-1/3 hoặc k=1/3
+) \(k=-\frac{1}{3}\Rightarrow\hept{\begin{cases}x=\left(-\frac{1}{3}\right).15=-5\\y=\left(-\frac{1}{3}\right).9=-3\end{cases}}\)
+) \(k=\frac{1}{3}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}.15=5\\y=\frac{1}{3}.9=3\end{cases}}\)
Vậy ...........
Đặt \(\frac{x}{15}=\frac{y}{9}\) = k => x = 15k; y = 9k
=> xy = 15k.9k = 135.k2 = 15
=> k2 = \(\frac{15}{135}=\frac{1}{9}\)
=> k \(\in\){\(-\frac{1}{3};\frac{1}{3}\)}
Mà x,y > 0 => k > 0
=> k = \(\frac{1}{3}\)
=> x = \(15.\frac{1}{3}=5\)
=> y = 15:5 = 3
\(M=\frac{x^2+9y^2}{xy}-\frac{8y^2}{xy}\)
\(\ge\frac{2\sqrt{9x^2y^2}}{xy}-\frac{8.y.y}{xy}\)
\(\ge6-\frac{8.\frac{x}{3}.y}{xy}=6-\frac{8}{3}=\frac{10}{3}\)
Đẳng thức xảy ra khi x = 3y.
Vậy..
\(x\ge3y\Leftrightarrow\frac{x}{y}\ge3\)
\(M=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}\)
\(\text{Đặt}\frac{x}{y}=a\Rightarrow a\ge3,M=a+\frac{1}{a}\)
Dùng điểm rơi a=3
\(M=\frac{8}{9}a+\frac{1}{9}a+\frac{1}{a}\ge\frac{8}{9}a+\frac{2}{3}\ge\frac{8}{3}+\frac{2}{3}=\frac{10}{3}\)
Cô Nguyễn Linh Chi : Cho e hỏi là bài này không cần chia, mà ta chỉ cần chuyển vế,phân tích đa thức thành nhân tử rồi thay vào để tính biểu thức A có được không ạ ??
Khi đó ta có là : \(\hept{\begin{cases}x=y\\2018x=-2019y\end{cases}}\)
Rồi nhận xét loại đc TH \(2018x=-2019y\) do x,y không cùng > 0
Khi đó có : \(A=\frac{2018x+x}{2019x-2018x}=2019\)
Em thấy dễ dàng hơn cô ạ !!
\(2018x^2+xy=2019y^2\)
chia cả hai vế cho y^2 ta có:
\(2018.\left(\frac{x}{y}\right)^2+\frac{x}{y}-2019=0\)
Đặt: \(t=\frac{x}{y}>0\)ta có: \(2018t^2+t-2019=0\Leftrightarrow2018t^2-2018t+2019t-2019=0\)
<=> \(2018t\left(t-1\right)+2019\left(t-1\right)=0\)
<=> \(\left(t-1\right)\left(2018t+2019\right)=0\)
<=> \(\orbr{\begin{cases}t-1=0\\2018t+2019=0\end{cases}}\)
<=> \(\orbr{\begin{cases}t=1\left(tm\right)\\t=-\frac{2019}{2018}\left(loai\right)\end{cases}}\)
Ta có: \(A=\frac{2018x+y}{2019x-2018y}=\frac{2018.\frac{x}{y}+1}{2019.\frac{x}{y}-2018}=\frac{2018t+1}{2019t-2018}=\frac{2018+1}{2019-2018}=2019\)
\(\frac{x}{15}=\frac{y}{9}\Rightarrow\frac{x}{5}=\frac{y}{3}\Rightarrow y=\frac{3}{5}x\)
Thay vào : \(xy=15\Rightarrow x\cdot\frac{3}{5}x=15\Rightarrow x^2=25\)
Mà x>0 => x= 5.
x/15 = y/9
x.9 = 15.y
x/y=9/15=3/5
Mà 3.5 =15
Nên x=3, y=5
Vậy x=3