1)Phân tích đa thức thành nhân tử
a) \(a^3+2a^2-13a+10\)
b) \(\left(a^2+4b^2-5\right)^2-16\left(ab+1\right)^2\)
2) Cho 6a-5b=1.Tìm giá trị nhỏ nhất của \(4a^2+25b^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)a3+2a2-13a+10
Ta thấy a=1;a=2 là nghiệm của đa thức nên:
=(a-2)(a-1)(a+5)
b)(a2+4b2-5)2-16(ab+1)2
=(a2+4b2-5+4ab+4)(a2+4b2-5-4ab-4)
=[(a+2b)2-1][(a-2b)2-9]
=(a+2b+1)(a+2b-1)(a-2b+3)(a-2b-3)
1 a) Bạn nhẩm nghiệm ra a = 1 thỏa mãn pt
Phân tích như sau : a^3 - a^2 + 3a^2 - 3a - 10a + 10 = (a-1)(a^2 + 3a - 10) = (a-1)(a+5)(a-2)
1 b) Dùng hằng đẳng thức a^2 - b^2 = (a-b)(a+b). Chứng minh ư ? Phá ngoặc ra đúng ngay :)
=(a^2 + 4b^2 - 5)^2 - (4ab+4)^2 (đưa 16 vào trong bình phương đó)
=(a^2 + 4b^2 - 4ab - 4 - 5)(a^2 + 4b^2 + 4ab +4 - 5)
Dùng tiếp hằng đẳng thức (a+b)^2 = a^2 + b^2 +2ab
=[(a-2b)^2 - 9] [(a+2b)^2 - 1]
Dùng 1 lần nửa hằng đẳng thức đầu tiên
=(a-2b-3)(a-2b+3)(a+2b-1)(a+2b+1)
1. \(4x^2-17xy+13y^2=4x^2-4xy-13xy+13y^2=4x\left(x-y\right)-13y\left(x-y\right)=\left(x-y\right)\left(4x-13y\right)\)
2. \(2x\left(x-5\right)-x\left(3+2x\right)=26\Leftrightarrow2x^2-10x-3x-2x^2=26\Leftrightarrow-13x=26\Leftrightarrow x=-2\)
3. \(A=\left(2a-3b\right)^2+2\left(2a-3b\right)\left(3a-2b\right)+\left(2b-3a\right)^2\)
\(\Leftrightarrow\left(2a-3b\right)^2-2\left(2a-3b\right)\left(2b-3a\right)+\left(2b-3a\right)^2=\left(2a-3b-2b+3a\right)^2=\left(5a-5b\right)^2\)
\(=25\left(a-b\right)^2=25\cdot100=2500\)
4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)
mà 3^6/9-81=0 => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0
1.
\(y^2+y\left(x^3+x^2+x\right)+x^5-x^4+2x^3-2x^2\)
\(\Delta=\left(x^3+x^2+x\right)^2-4\left(x^5-x^4+2x^3-2x^2\right)\)
\(=\left(x^3-x^2+3x\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}y=\dfrac{-x^3-x^2-x+x^3-x^2+3x}{2}=-x^2+x\\y=\dfrac{-x^3-x^2-x-x^3+x^2-3x}{2}=-x^3-2x\end{matrix}\right.\)
Hay đa thức trên có thể phân tích thành:
\(\left(x^2-x+y\right)\left(x^3+2x+y\right)\)
Dựa vào đó em tự tách cho phù hợp
a) \(ĐK:a\ne1;a\ne0\)
\(A=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}=\left[\frac{a^2-2a+1}{a^2+a+1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}\)\(=\left[\frac{a^3-3a^2+3a-1}{a^3-1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}=\frac{a^3-1}{a^3-1}.\frac{4a}{a^2+4}=\frac{4a}{a^2+4}\)
b) Ta có: \(a^2+4\ge4a\)(*)
Thật vậy: (*)\(\Leftrightarrow\left(a-2\right)^2\ge0\)
Khi đó \(\frac{4a}{a^2+4}\le1\)
Vậy MaxA = 1 khi x = 2
1) \(a^3+2a^2-13a+10=a^3-a^2+3a^2-3a-10a+10=\)
\(=a^2\left(a-1\right)+3a\left(a-1\right)-10\left(a-1\right)=\left(a-1\right)\left(a^2+3a-10\right)\)
\(=\left(a-1\right)\left(a^2-2a+5a-10\right)=\left(a-1\right)\left[a\left(a-2\right)+5\left(a-2\right)\right]=\)
\(=\left(a-1\right)\left(a-2\right)\left(a+5\right)\)
b) \(\left(a^2+4b^2-5\right)^2-16\left(ab+1\right)^2=\left(a^2+4b^2-5+4ab+4\right)\left(a^2+4b^2-5-4ab-4\right)\)
\(=\left(a^2+4ab+4b^2-1\right)\left(a^2-4ab+4b^2-9\right)=\left[\left(a+2b\right)^2-1\right]\left[\left(a-2b\right)^2-9\right]=\)
\(=\left(a+2b+1\right)\left(a+2b-1\right)\left(a-2b+3\right)\left(a-2b-3\right)\)
2) \(6a-5b=1\Rightarrow5b=6a-1\Rightarrow25b^2=36a^2-12a+1\)
\(\Rightarrow4a^2+25b^2=40a^2-12a+1=40\left(a^2-2\cdot a\cdot\frac{3}{20}+\left(\frac{3}{20}\right)^2\right)+1-\frac{9}{10}\)
\(=40\left(a-\frac{3}{20}\right)^2+\frac{1}{10}\)
Vậy GTNN của \(4a^2+25b^2\)= 1/10. Xảy ra khi a = 3/20 và b = -1/50.