cho t/g ABC vg tại A có AH là đường cao, AB=6cm, HC= 6.4 cm . Tính BC,BH,AH,AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt BH = x (x > 0) => BC = (x + 6,4)
Có: AB2 = BH.BC => 36 = x(x + 6,4) => 36 = x2 + 6,4x => x2 + 6,4x - 36 = 0
=> (x + 10)(5x - 18) = 0 => x = -10 (loại) hoặc x = 18/5 (nhận)
=> BH = 18/5cm => BC = 18/5 + 6,4 = 10cm
Có: AC2 = HC.BC = 6,4 . 10 = 64 => AC = 8cm
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{6^2}+\frac{1}{8^2}=\frac{25}{576}\Rightarrow AH=\sqrt{\frac{576}{25}}=\frac{24}{5}cm\)
Vậy BC = 10cm , BH = 18/5cm , AH = 24/5cm , AC = 8cm
\(\Delta ABC\)có A=90 và AH là đường cao
Áp dụng hệ thức giữa cạnh góc vuông và hingf chiếu của nó trên cạnh huyền
=> \(AB^2=CH.BC\); \(AC^2=HC.BC\)
<=> \(AB^2=\left(BC-CH\right)BC\)
<=>\(BC^2=AB^2+CH.BH\)
=>\(BC^2=6^2+6,4.BC\)
<=> \(BC^2-6,4.BC-36=0\)
=> BC = 10(cm) (nhận) : BC=- 3,6 (cm) (loại)
=> \(AC=\sqrt{CH.BC}=\sqrt{6,4.10}=8\)(cm)
=>BH= BC - CH =10 - 6,4 = 3,6 (cm)
Áp dụng hệ thức giữa đường cao và các cạnh trong tam giác
=> AH.BC =AB.AC
=>AH = \(\frac{AB.AC}{BC}=\frac{6.8}{10}=4.8\left(cm\right)\)
Vậy AH =4,8 (cm) ; BC = 10 (cm) ; AC =8(cm) ; BH = 3,6 (cm)
Theo đề ta có: BC = 10 => BC2 = 100 => AB2 + AC2 = 100 (1)
\(\frac{AB}{AC}=\frac{3}{4}\Rightarrow AB=\frac{3}{4}AC\) (2)
Thay (2) vào (1) ta được: \(\left(\frac{3}{4}AC\right)^2+AC^2=100\Rightarrow\frac{9}{16}AC^2+AC^2=100\)
\(\Rightarrow\frac{25}{16}AC^2=100\Rightarrow AC^2=64\Rightarrow AC=8\Rightarrow AB=\frac{3}{4}AC=\frac{3}{4}.8=6\)
Mặt khác: \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{AH^2}=\frac{1}{6^2}+\frac{1}{8^2}=\frac{25}{576}\Rightarrow AH^2=\frac{576}{25}\Rightarrow AH=\frac{24}{5}\)
Vậy AH = 24/5 , AB = 6 , AC = 8
ta co \(AH^2=BH\cdot HC\Rightarrow AH^2=1,8HC\)
ap dung dl pitago vao tam giac vuong AHC co \(AH^2+CH^2=AC^2\Rightarrow1,8HC+HC^2=16\)
\(\Rightarrow CH^2+1,8CH-16=0\Rightarrow\left(CH-3,2\right)\left(CH+5\right)=0\)
\(\Rightarrow CH=3,2\) (do BH>0)
\(\Rightarrow AH^2=1,8\cdot CH=5.76\Rightarrow AH=2,4\)
\(BH+HC=BC\Rightarrow BC=1,8+3,2=5\)
ap dung dl pitago ta tinh dc \(AB^2+AC^2=BC^2\Rightarrow AB=3\)
Cho tam giác ABC vuông tại A, AH là đường cao. Biết AB=15cm,HC=16cm.Tính BC,AH,HB,AC.
Đặt BH = x (x > 0) => BC = (x + 6,4)
Có: AB2 = BH.BC => 62 = x.(x + 6,4) => 36 = x2 + 6,4x => x2 + 6,4x - 36 = 0
=> (x + 10)(5x - 18) = 0
=> x + 10 = 0 => x = -10 (loại)
hoặc 5x - 18 = 0 => x = 18/5 (nhận)
=> BH = 18/5cm , BC = 18/5 + 6,4 = 10cm
Ta có: AC2 = HC.BC = 6,4 . 10 = 64 => AC = 8cm
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{6^2}+\frac{1}{8^2}=\frac{25}{576}\Rightarrow AH=\sqrt{\frac{576}{25}}=\frac{24}{5}cm\)
Vậy BC = 10cm , BH = 18/5cm , AH = 24/5cm , AC = 8cm